
Unit-1 

Verilog as HDL 

Verilog has a variety of constructs as part of it. All are aimed at providing a functionally tested 

and a verified design description for the target FPGA or ASIC.  

The language has a dual function – one fulfilling the need for a design description and the other 

fulfilling the need for verifying the design for functionality and timing constraints like 

propagation delay, critical path delay, slack, setup, and hold times. 

Levels of Design Description 

The components of the target design can be described at different levels with the help of the 

constructs in Verilog. 

In Verilog HDL a module can be defined using various levels of abstraction. There are four levels 

of abstraction in verilog.  

They are: 1. Circuit Level 2. Gate Level 3. Data Flow Level 4. Behavioral Level 

Circuit Level 

At the circuit level, a switch is the basic element with which digital circuits are built. Switches 

can be combined to form inverters and other gates at the next higher level of abstraction. 

Verilog has the basic MOS switches built into its constructs, which can be used to build basic 

circuits like inverters, basic logic gates, simple 1-bit dynamic and static memories. They can be 

used to build up larger designs to simulate at the circuit level, to design performance critical 

circuits.  

The below Figure1 shows the circuit of an inverter suitable for description with the switch level 

constructs of Verilog. 

 

Figure 1 CMOS inverter 



Gate Level 

At the next higher level of abstraction, design is carried out in terms of basic gates. All the basic 

gates are available as ready modules called “Primitives.” Each such primitive is defined in terms 

of its inputs and outputs. Primitives can be incorporated into design descriptions directly. Just 

as full physical hardware can be built using gates, the primitives can be used repeatedly and 

judiciously to build larger systems.  

Figure 2 shows an AND gate suitable for description using the gate primitive of Verilog.  

 

The gate level modeling or structural modeling as it is sometimes called is akin to building a 

digital circuit on a bread board, or on a PCB. One should know the structure of the design to 

build the model here. One can also build hierarchical circuits at this level. However, beyond 20 

to 30 of such gate primitives in a circuit, the design description becomes unwieldy; testing and 

debugging become laborious. 

Data Flow 

Data flow is the next higher level of abstraction. All possible operations on signals and variables 

are represented here in terms of assignments. All logic and algebraic operations are 

accommodated. The assignments define the continuous functioning of the concerned block. At 

the data flow level, signals are assigned through the data manipulating equations. All such 

assignments are concurrent in nature. The design descriptions are more compact than those at 

the gate level.  

Figure 3 shows an A-O-I relationship suitable for description with the Verilog constructs at the 

data flow level. 

 

 



 

Behavioral Level 

Behavioral level constitutes the highest level of design description; it is essentially at the system 

level itself. With the assignment possibilities, looping constructs and conditional branching 

possible, the design description essentially looks like a “C” program. 

 A module can be implemented in terms of the design algorithm. The designer no need to have 

any knowledge of hardware implementation. 

The statements involved are “dense” in function. Compactness and the comprehensive nature 

of the design description make the development process fast and efficient. 

 Figure 4 shows an A-O-I gate expressed in pseudo code suitable for description with the 

behavioral level constructs of Verilog. 

 

The Overall Design Structure in Verilog 

The possibilities of design description statements and assignments at different levels 

necessitate their accommodation in a mixed mode. In fact the design statements coexisting in a 

seamless manner within a design module is a significant characteristic of Verilog. Thus Verilog 

facilitates the mixing of the above-mentioned levels of design. A design built at data flow level 

can be instantiated to form a structural mode design. Data flow assignments can be 

incorporated in designs which are basically at behavioral level. 

 

 

 

 

 

 



Concurrency 

In an electronic circuit all the units are to be active and functioning concurrently. The voltages 

and currents in the different elements in the circuit can change simultaneously. In turn the logic 

levels too can change. Simulation of such a circuit in an HDL calls for concurrency of operation.  

A number of activities – may be spread over different modules – are to be run concurrently 

here. Verilog simulators are built to simulate concurrency. (This is in contrast to programs in the 

normal languages like C where execution is sequential.)  

Concurrency is achieved by proceeding with simulation in equal time steps. The time step is 

kept small enough to be negligible compared with the propagation delay values. All the 

activities scheduled at one time step are completed and then the simulator advances to the 

next time step and so on. The time step values refer to simulation time and not real time. One 

can redefine timescales to suit technology as and when necessary and carry out test runs.  

In some cases the circuit itself may demand sequential operation as with data transfer and 

memory-based operations. Only in such cases sequential operation is ensured by the 

appropriate usage of sequential constructs from Verilog HDL. 

Simulation and Synthesis 

The design that is specified and entered as described earlier is simulated for functionality and 

fully debugged. Translation of the debugged design into the corresponding hardware circuit 

(using an FPGA or an ASIC) is called “synthesis.”  

The tools available for synthesis relate more easily with the gate level and data flow level 

modules [Smith MJ]. The circuits realized from them are essentially direct translations of 

functions into circuit elements. 

 In contrast many of the behavioral level constructs are not directly synthesizable; even if 

synthesized they are likely to yield relatively redundant or wrong hardware. The way out is to 

take the behavioral level modules and redo each of them at lower levels. The process is carried 

out successively with each of the behavioral level modules until practically the full design is 

available as a pack of modules at gate and data flow levels (more commonly called the “RTL 

level”). 

 

 

 



Programming Language Interface (PLI) 

PLI provides an active interface to a compiled Verilog module. The interface adds a new 

dimension to working with Verilog routines from a C platform. The key functions of the 

interface are as follows:  

 One can read data from a file and pass it to a Verilog module as input. Such data can be 

test vectors or other input data to the module. Similarly, variables in Verilog modules 

can be accessed and their values written to output devices.  

 Delay values, logic values, etc., within a module can be accessed and altered.  

 Blocks written in C language can be linked to Verilog modules. 

MODULE 

Any Verilog program begins with a keyword – called a “module.” A module is the name given to 

any system considering it as a black box with input and output terminals as shown in Figure 1. 

The terminals of the module are referred to as ‘ports’. The ports attached to a module can be of 

three types: 

 

 input ports through which one gets entry into the module; they signify the input signal 

terminals of the module. 

 output ports through which one exits the module; these signify the output 
signal terminals of the module.  

 inout ports: These represent ports through which one gets entry into the 
module or exits the module; These are terminals through which signals are 
input to the module sometimes; at some other times signals are output from 
the module through these. 

Whether a module has any of the above ports and how many of each type are present depend 
solely on the functional nature of the module. Thus one module may not have any port at all; 
another may have only input ports, while a third may have only output ports, and so on. 



All the constructs in Verilog are centered on the module. They define ways of building up, 
accessing, and using modules. The structure of modules and the mode of invoking them in a 
design are discussed here. 
 
A module comprises a number of “lexical tokens” arranged according to some predefined 
order. The possible tokens are of seven categories: 

 White spaces 

 Comments 

 Operators 

 Numbers 

 Strings 

 Identifiers 

 Keywords 
 
The rules constraining the tokens and their sequencing will be dealt with as we progress. For 
the present let us consider modules. In Verilog any program which forms a design description is 
a “module.” Any program written to test a design description is also a “module.” The latter are 
often called as “stimulus modules” or “test benches.” A module used to do simulation has the 
form shown in Figure 2. Verilog takes the active statements appearing between the “module” 
statement and the “endmodule” statement and interprets all of them together as forming the 
body of the module. Whenever a module is invoked for testing or for incorporation into a 
bigger design module, the name of the module (“test” here) is used to identify it for the 
purpose. 

 
 
 



LANGUAGE CONSTRUCTS AND CONVENTIONS IN VERILOG 

Introduction 

The constructs and conventions make up a software language. A clear understanding and 
familiarity of these is essential for the mastery of the language. Verilog has its own constructs 
and conventions [IEEE, Sutherland]. In many respects they resemble those of C language 
[Gottfried]. 

Any source file in Verilog (as with any file in any other programming language) is made up of a 

number of ASCII characters. The characters are grouped into sets — referred to as “lexical 

tokens.” A lexical token in Verilog can be a single character or a group of characters. Verilog has 

7 types of lexical tokens- operators, keywords, identifiers, white spaces, comments, numbers, 

and strings. 

Case Sensitivity 

Verilog is a case-sensitive language like C. Thus sense, Sense, SENSE, sENse,… etc., are all 

related as different entities / quantities in Verilog. 

Keywords 

The keywords define the language constructs. A keyword signifies an activity to be carried out, 

initiated, or terminated. As such, a programmer cannot use a keyword for any purpose other 

than that it is intended for. All keywords in Verilog are in small letters and require to be used as 

such (since Verilog is a case-sensitive language). All keywords appear in the text in New Courier 

Bold-type letters. 

Examples 
 
module -- signifies the beginning of a module definition. 
endmodule -- signifies the end of a module definition. 
begin --  signifies the beginning of a block of statements. 
end --   signifies the end of a block of statements.  
if --   signifies a conditional activity to be checked  
while --   signifies a conditional activity to be carried out. 
 
Identifiers 
 
Any program requires blocks of statements, signals, etc., to be identified with an attached 
nametag. Such nametags are identifiers. It is good practice for us to use identifiers, closely 
related to the significance of variable, signal, block, etc., concerned. This eases understanding 
and debugging of any program. 
e.g., clock, enable, gate_1, . . . 



There are some restrictions in assigning identifier names. All characters of the alphabet or an 
underscore can be used as the first character. Subsequent characters can be of alphanumeric 
type, or the underscore (_), or the dollar ($) sign – for example 
 
name, _name. Name, name1, name_$, . . . --  all these are allowed as identifiers 
 
name aa -- not allowed as an identifier because of the blank ( “name” and “aa” are interpreted 
as two different identifiers) 
 
$name -- not allowed as an identifier because of the presence of “$” as the first character. 
1_name -- not allowed as an identifier, since the numeral “1” is the first character 
 
@name -- not allowed as an identifier because of the presence of the character “@”. 
A+b m not allowed as an identifier because of the presence of the character “+”. 
 
White Space Characters 
 
Blanks (\b), tabs (\t), newlines (\n), and formfeed form the white space characters in Verilog. In 

any design description the white space characters are included to improve readability. 

Functionally, they separate legal tokens. They are introduced between keywords, keyword and 

an identifier, between two identifiers, between identifiers and operator symbols, and so on. 

White space characters have significance only when they appear inside strings. 

Comments 

Comments can be inserted in the code for readability and documentation. There are two ways 
to write comments. A one-line comment starts with "//". Verilog skips from that point to the 
end of line. A multiple-line comment starts with "/*" and ends with "*/". Multiple-line 
comments cannot be nested. However, one-line comments can be embedded in multiple-line 
comments. 
 
a = b && c; // This is a one-line comment 
 
/* This is a multiple line 
 
comment */ 
 
/* This is /* an illegal */ comment */ 
 
/* This is //a legal comment */ 
 
 
 



Operators 
 
Operators are of three types: unary, binary, and ternary. Unary operators precede the operand. 
Binary operators appear between two operands. Ternary operators have two separate 
operators that separate three operands. 
 
a = ~ b; // ~ is a unary operator. b is the operand 
 
a = b && c; // && is a binary operator. b and c are operands 
 
a = b ? c : d; // ?: is a ternary operator. b, c and d are operands 
 
Number Specification 
 
There are two types of number specification in Verilog: sized and unsized. 
Sized numbers 
Sized numbers are represented as <size> '<base format> <number>. 
 
<size> is written only in decimal and specifies the number of bits in the number. Legal base 
formats are decimal ('d or 'D), hexadecimal ('h or 'H), binary ('b or 'B) and octal ('o or 'O). The 
number is specified as consecutive digits from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f. Only a 
subset of these digits is legal for a particular base. Uppercase letters are legal for number 
specification. 
 
4'b1111 // This is a 4-bit binary number 
12'habc // This is a 12-bit hexadecimal number 
16'd255 // This is a 16-bit decimal number. 
 
Unsized numbers 
 
Numbers that are specified without a <base format> specification are decimal numbers by 
default. Numbers that are written without a <size> specification have a default number of bits 
that is simulator- and machine-specific (must be at least 32). 
  
23456 // This is a 32-bit 'hc3 // This is a 32-bit 'o21 // This is a 32-bit 
  
decimal number by default hexadecimal number octal number 
  
X or Z values 
 
Verilog has two symbols for unknown and high impedance values. These values are very 
important for modeling real circuits. An unknown value is denoted by an x. A high impedance 
value is denoted by z. 
 



12'h13x // This is a 12-bit hex number; 4 least significant bits unknown 
 
6'hx // This is a 6-bit hex number 
 
32'bz // This is a 32-bit high impedance number 
 
An x or z sets four bits for a number in the hexadecimal base, three bits for a number in the 
octal base, and one bit for a number in the binary base. If the most significant bit of a number is 
0, x, or z, the number is automatically extended to fill the most significant bits, respectively, 
with 0, x, or z. This makes it easy to assign x or z to whole vector. If the most significant digit is 
1, then it is also zero extended. 
 
Negative numbers 
 
Negative numbers can be specified by putting a minus sign before the size for a constant 
number. Size constants are always positive. It is illegal to have a minus sign between <base 
format> and <number>. An optional signed specifier can be added for signed arithmetic. 
 
-6'd3 // 8-bit negative number stored as 2's complement of 3 -6'sd3 // Used for performing 
signed integer math 4'd-2 // Illegal specification 
 
Underscore characters and question marks 
 
An underscore character "_" is allowed anywhere in a number except the first character. 
Underscore characters are allowed only to improve readability of numbers and are ignored by 
Verilog. 
A question mark "?" is the Verilog HDL alternative for z in the context of numbers. 

12'b1111_0000_1010 // Use of underline characters for readability  

4'b10?? // Equivalent of a 4'b10zz 

Strings 
 
A string is a sequence of characters that are enclosed by double quotes. The restriction on a 
string is that it must be contained on a single line, that is, without a carriage return. It cannot be 
on multiple lines. Strings are treated as a sequence of one-byte ASCII values. 
 
"Hello Verilog World" // is a string 
 
"a / b" // is a string 
 
 
 
 



Value Set or Logic Values 
 
Verilog supports four values and eight strengths to model the functionality of real hardware. 
The four value levels are listed in Table below. 
 

Value Level Condition in Hardware Circuits 

0 Logic zero, false condition 

1 Logic one, true condition 

x Unknown logic value 

Z High impedance, floating state 

  
Strengths 
 
The logic levels are also associated with strengths. In many digital circuits, multiple assignments 
are often combined to reduce silicon area or to reduce pin-outs. To facilitate this, one can 
assign strengths to logic levels. Verilog has eight strength levels – four of these are of the 
driving type, three are of capacitive type and one of the hi-Z type. 
 
In addition to logic values, strength levels are often used to resolve conflicts between drivers of 
different strengths in digital circuits. Value levels 0 and 1 can have the strength levels listed in 
Table below 
 

Strength Level Type Degree 
   

supply Driving strongest 
   

strong Driving  
   

pull riving  
   

large Storage  
   

weak Driving  
   

medium Storage  
   

small Storage  
   

highz High Impedance weakest 
   

   

   

If two signals of unequal strengths are driven on a wire, the stronger signal prevails.  
For example, if two signals of strength strong1 and weak0 contend, the result is resolved as a 
strong1. If two signals of equal strengths are driven on a wire, the result is unknown. If two 
signals of strength strong1 and strong0 conflict, the result is an x. Strength levels are 
particularly useful for accurate modeling of signal contention, MOS devices, dynamic MOS, and 
other low-level devices. 
 



Data Types 
 
The data handled in Verilog fall into two categories: 
(i) Net data type 
(ii) Variable data type 
 
The two types differ in the way they are used as well as with regard to their respective 
hardware structures. Data type of each variable or signal has to be declared prior to its use. The 
same is valid within the concerned block or module. 
 
Nets 
A net signifies a connection from one circuit unit to another. Such a net carries the value of the 
signal it is connected to and transmits to the circuit blocks connected to it. If the driving end of 
a net is left floating, the net goes to the high impedance state. A net can be specified in 
different ways. 
wire: It represents a simple wire doing an interconnection. Only one output is connected to a 
wire and is driven by that. 
 
tri: It represents a simple signal line as a wire. Unlike the wire, a tri can be driven by more 
than one signal outputs. 
Nets are one-bit values by default unless they are declared explicitly as vectors. The terms wire 
and net are often used interchangeably. 
 
Variable Data Type 
 
A variable is an abstraction for a storage device. It can be declared through the keyword reg 
and stores the value of a logic level: 0, 1, x, or z. A net or wire connected to a reg takes on the 
value stored in the reg and can be used as input to other circuit elements. But the output of a 
circuit cannot be connected to a reg. The value stored in a reg is changed through a fresh 
assignment in the program. 
time, integer, real, and realtime are the other variable types of data; these are dealt with later. 

Time 
Verilog simulation is done with respect to simulation time. A special time register data type is 
used in Verilog to store simulation time. A time variable is declared with the keyword time. The 
width for time register data types is implementation-specific but is at least 64 bits. The system 
function $time is invoked to get the current simulation time. 
 
time save_sim_time; // Define a time variable save_sim_time initial 
 
save_sim_time = $time; // Save the current simulation time 
 
 
 



Scalars and Vectors 
 
Entities representing single bits — whether the bit is stored, changed, or transferred — are 
called “scalars.” Often multiple lines carry signals in a cluster – like data bus, address bus, and 
so on. Similarly, a group of regs stores a value, which may be assigned, changed, and handled 
together. The collection here is treated as a “vector.”  
Figure below illustrates the difference between a scalar and a vector. wr and rd are two scalar 
nets connecting two circuit blocks circuit1 and circuit2. b is a 4-bit-wide vector net connecting 
the same two blocks. b[0], b[1], b[2], and b[3] are the individual bits of vector b. They are “part 
vectors.” 
 
A vector reg or net is declared at the outset in a Verilog program and hence treated as such. 
The range of a vector is specified by a set of 2 digits (or expressions evaluating to a digit) with a 
colon in between the two. The combination is enclosed within square brackets. 

 

Examples: 

wire[3:0] a; /* a is a four bit vector of net type; the bits are designated as a[3], a[2], a[1] and 
a[0]. */ 

reg[2:0] b; /* b is a three bit vector of reg type; the bits are designated as b[2], b[1] and 
b[0]. */ 

reg[4:2] c; /* c is a three bit vector of reg type; the bits are designated as c[4], c[3] and c[2]. 
*/ 

wire[-2:2] d ; /* d is a 5 bit vector with individual bits designated as d[-2], d[-1], d[0], d[1] and 
d[2]. */ 

 



Whenever a range is not specified for a net or a reg, the same is treated as a scalar – a single bit 
quantity. In the range specification of a vector the most significant bit and the least significant 
bit can be assigned specific integer values. These can also be expressions evaluating to integer 
constants – positive or negative. 

Normally vectors – nets or regs – are treated as unsigned quantities. They have to be 
specifically declared as “signed” if so desired. 
 
Examples 
 
wire signed[4:0] num; // num is a vector in the range -16 to +15. 
 
reg signed [3:0] num_1; // num_1 is a vector in the range -8 to +7. 
 

 

 

 
 
 
 



UNIT-5 

SYSTEM TASKS, FUNCTIONS, AND COMPILER DIRECTIVES 

 

A number of facilities in Verilog relate to the management of simulation; starting and stopping of 

simulation, selectively monitoring the activities, testing the design for timing constraints, etc., are 

amongst them. Although a variety of such constructs is available in Verilog. 

 

PARAMETERS 

Verilog defines parameter as a constant value that is declared within structure of module. The 

constant value signifies timing values, range of variables, wires e.t.c. 

The parameter values can be specified and changed to suit the design environment or test 

environment. Such changes are effected and frozen at instantiation. 

The assigned values cannot change during testing or synthesis. 

 

Two types of parameters are of use in modules: specparam and defparam. 

Specparam : Parameters related to timings, time delays, rise and fall times, etc., are technology-

specific and used during  simulation.    Parameter values can be assigned or overridden with the 

keyword “specparam” preceding the assignments. 

Defparam:  Parameters related to design, bus width, and register size are of a different category. They 

are related to the size or dimension of a specific design; they are technology-independent. 

Assignment or overriding is with assignments following the keyword “defparam”. 

 

Timing-Related Parameters 

The constructs associated with parameters are discussed here through specific design or test 

modules. 

Example:  Module of a half-adder with delays assigned to the output transitions; a test bench is 

also included in the figure. 

module ha_1(s,ca,a,b); 

 input a,b; output s,ca; 

 xor #(1,2) (s,a,b); 

and #(3,4) (ca,a,b);  

endmodule 

 

//test-bench  

module tstha; 

 reg a,b; wire s,ca;  

ha_1 hh(s,ca,a,b); 

initial  

begin  



a=0;b=0;  

end 

always  

begin  

#5 a=1;b=0;  

#5 a=0;b=1;  

#5 a=1;b=1; 

 #5 a=0;b=0; 

 end 

initial $monitor($time , " a = %b , b = %b ,out carry = %b , outsum = %b ",a,b,ca,s); 

initial #30 $stop;  

endmodule 

 

Parameter Declarations and Assignments 

Declaration of parameters in a design as well as assignments to them can be effected using the 

keyword “Parameter.” A declaration has the form 

parameter alpha = a, beta = b; 

Where 

 parameter is the keyword, 

 alpha and beta are the names assigned to two parameters and 

 a, b are values assigned to alpha and beta, respectively. 

In general a and b can be constant expressions. The parameter values can be overridden during 

instantiation but cannot be changed during the run-time. If a parameter assignment is made through 

the keyword “localparam,” its value cannot be overridden. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



PATH DELAYS 

The delay between source pin (input or inout) and destination pin (ouput or inout) of module is called 

module path delay. 

Verilog has the provision to specify and check delays associated with total paths – from any input to 

any output of a module. Such paths and delays are at the chip or system level. They are referred to as 

“module path delays”.  

Constructs available make room for specifying their paths and assigning delay values to them – 

separately or together. 

 

Specify Blocks 

Module paths are specified and values assigned to their delays through specify blocks. They are used 

to specify rise time, fall time, path delays pulse widths, and the like. A “specify” block can have the 

form shown in Figure  

specify 

specparam rise_time = 5, fall_time = 6;  

(a =>b) = (rise_time, fall_time); 

(c => d) = (6, 7); 

endspecify 

 

The block starts with the keyword “specify” and ends with the keyword “endspecify”. Specify blocks 

can appear anywhere within a module. 

 

Module Paths 

Module Path delays are assigned in Verilog within the keywords specify and endspecify. The 

statements within these keywords constitute a specify block. 

 Module paths can be specified in different ways inside a specify block. 

Parallel connection 

Every path delay statement has a source field and a destination field. 

A parallel connection is specified by the symbol => and is used as shown below.  

Usage: ( <source_field> => <destination_field>) = <delay_value>; 

In a parallel connection, each bit in source field connects to its corresponding bit in the destination 

field.  

If the source and the destination fields are vectors, they must have the same number of bits; 

otherwise, there is a mismatch. Thus, a parallel connection specifies delays from each bit in source to 

each bit in destination. 

Example: Parallel Connection 

(a => out) = 9; //bit-to-bit connection. Both a and out are single-bit 
// vector connection. Both a and out are 4-bit vectors a[2:0], out[2:0] a is source field, out is 
destination field.  



// for three bit-to-bit connection statements. 
(a[0] => out[0]) = 9; 
(a[1] => out[1]) = 9; 
(a[2] => out[2]) = 9; 
 
 
//illegal connection. a[4:0] is a 5-bit vector, out[3:0] is 4-bit. 
 //Mismatch between bit width of source and destination fields  
(a => out) = 9;   //bit width does not match. 
Full connection 
A full connection is specified by the symbol *> and is used as shown below. 

Usage: ( <source_field> *> <destination_field>) = <delay_value>; 
In a full connection, each bit in the source field connects to every bit in the destination field. If the 
source and the destination are vectors, then they need not have the same number of bits. A full 
connection describes the delay between each bit of the source and every bit in the destination. 
Example: 
Figure below illustrates a case of all possible paths from  
a 2-bit vector A to another 2-bit vector B; the specification implies 4 paths. 
 
 
 
 
We can write the module M with pin-to-pin 
delays, using specify blocks as follows: 
 
// Parallel connection 
 
module M (out, a, b, c, d); 
output out; 
input a, b, c, d; 
wire e, f; 
  //Specify block with path delay statements  
specify 
(a => out) = 9; 
(b => out) = 9; 
(c => out) = 11; 
(d => out) = 11; 
endspecify 
 
//gate instantiations 
and a1(e, a, b); 
and a2(f, c, d); 
and a3(out, e, f); 
endmodule 
 

 
 
 
 
 
 
//Full Connection 
 
module M (out, a, b, c, d); 
output out; 
input a, b, c, d; 
wire e, f; 
specify 
(a,b *> out) = 9; 
(c,d *> out) = 11; 
endspecify 
and a1(e, a, b); 
and a2(f, c, d); 
and a3(out, e, f); 
endmodule 
 
 
 



MODULE PARAMETERS 
Module parameters are associated with size of bus, register, memory, ALU, and so on. They can be 
specified within the concerned module but their value can be altered during instantiation. The 
alterations can be brought about through assignments made with defparam. Such defparam 
assignments can appear anywhere in a module. 
 
Example 
The parameter msb specifies the ALU size –– consistently in the input and the output vectors of the 

ALU. The size assignment has been made separately through the assignment statement 

parameter msb = 3; 

The ALU module with its size declared as a parameter. 

module alu (d, co, a, b, f,cci); 
 parameter msb=3; 
output [msb:0] d; output co;  
wire[msb:0]d;  
input cci;  
input [msb : 0 ] a, b;  
input [1 : 0] f;  
specify 
(a,b=>d)=(1,2); 
(a,b,cci*>co)=1;  
endspecify 
assign {co,d}= (f==2'b00)?(a+b+cci):((f==2'b01)?(a-b):((f==2'b10)?{1'bz,a^b}:{1'bz,~a})); 
endmodule 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
SYSTEM TASKS AND FUNCTIONS 

Verilog has a number of System Tasks and Functions defined in the LRM (language reference manual).  

They are for taking output from simulation, control simulation, debugging design modules, testing modules for 

specifications, etc. 

 A “$” sign preceding a word or a word group signifies a system task or a system function. 

 

Output Tasks 

A number of system tasks are available to output values of variables and selected messages, etc., on the 

monitor. Out of these $monitor and $display tasks have been extensively used. 

Display Tasks 

The $display task, whenever encountered, displays the arguments in the desired format; and the display 

advances to a new line. 

$strobe Task: 

When a variable or a set of variables is sampled and its value displayed, the $strobe task can be used; it senses 

the value of the specified variables and displays them. 

The $strobe task is executed as the last activity in the concerned time step. It is useful to check for specific 

activities and debug modules. 

Example: 

initial #9 $strobe ("at time %t, di=%b, do=%b", $time, di, do); 

$monitor Task: 

$monitor task is activated and displays the arguments specified whenever any   of   the arguments changes. 

$stop and $finish Tasks: 

The $stop task suspends simulation. The compiled design remains active; simulation can be resumed through 

commands available in the simulator.  

In contrast $finish stops simulation, closes the simulation environment, and reverts to the operating system. 

$random Function: 

A set of random number generator functions are available as system functions. 
 One can start with a seed number (optional) and generate a random number repeatedly. Such random 
number sequences can be fruitfully used for testing. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Compiler directives 
 
Compiler directives are special commands, beginning with ‘, that affect the operation of the Verilog 

simulator. 

 

Time Scale 

`timescale specifies the time unit and time precision. A time unit of 10 ns means a time expressed as 

say #2.3 will have a delay of 23.0 ns. Time precision specifies how delay values are to be rounded off 

during simulation. Valid time units include s, ms, us (μs), ns, ps, fs. 

Only 1, 10 or 100 are valid integers for specifying time units or precision. It also determines the 

displayed time units in display commands like $display. 

Syntax 

`timescale time_unit / time_precision; 

Examples  

`timescale 1 ns/1 ps // unit =1ns, precision=1/1000ns 

`timescale 1 ns /100 ps // time unit = 1ns; precision = 1/10ns; 

 

`define 

A macro is an identifier that represents a string of text. Macros are defined with the directive `define, 
and are invoked with the quoted macro name as shown in the example. Verilog compiliers will 
substitute the string for the macro name before starting compilation. Many people prefer to use 
macros instead of parameters. 
 The define directive in Verilog is similar to #define in c-language. 
Syntax 
`define macro_name text_string; 
. . . `macro_name . . . 
Example 
`define add_lsb a[7:0] + b[7:0] 
`define N 8 // Word length 
wire [`N -1:0] S; 
assign S = 'add_lsb; // assign S = a[7:0] + b[7:0]; 
 
Include Directive 
Include is used to include the contents of a text file at the point in the current file where the include 
directive is.  The include directive is similar to the C/C++ include directive. 
Syntax 
`include file_name; 
 
Example  
module x; 
`include  “dclr.v”; // contents of file “dclr,v” are put here 
 



USER-DEFINED PRIMITIVES (UDP): 
The primitives available in Verilog are all of the gate or switch types. Verilog has the provision for the 
user to define primitives –called “user defined primitive (UDP)” and use them.  
The designers occasionally like to use their own custom-built primitives when developing a design. 
Verilog provides the ability to define User- Defined Primitives (UDP). These primitives are self-
contained and do not instantiate other modules or primitives. UDPs are instantiated exactly like gate-
level primitives. 
UDPs are basically of two types –combinational and sequential. A combinational UDP is used to define 
a combinational scalar function and a sequential UDP for a sequential function. 
 
Combinational UDPs: 
A combinational UDP accepts a set of scalar inputs and gives a scalar output. An inout declaration is 
not supported by a UDP. The UDP definition is on par with that of a module; that is, it is defined 
independently like a module and can be used in any other module. 

 
primitive udp_and(out, a, b); 
output out; 
input a, b; 
table 
       //   a b: Out; 

0 0: 0; 
0 1: 0; 
1 0: 0; 
1 1: 1; 

endtable 
endprimitive 

 
Sequential UDPs: 
Any sequential circuit has a set of possible states. When it is in one of the specified states, the next 
state to be taken is described as a function of the input logic variables and the present state. A 
sequential UDP can accommodate all these. 

 
primitive latch(q, d, clock, clear); // d-latch  
output q; 
reg q; //q declared as reg to create internal storage input d, clock, clear; 
initial q = 0; //initialize output to value 0 
table    //state table 

 
         //d clock clear: q : q+ ; 
 ? ? 1 : ? : 0 ;     //clear condition; 

1 1 0 : ? : 1; //latchq =data=1 
0 1 0 : ? : 0; //latchq =data=0 
? 0 0 : ? : - ; //retain original state if clock = 0 
endtable 
endprimitive 



Operators 

Operators act on the operands to produce desired results. Verilog provides various 

types of operators.  

 

d1 && d2 // && is an operator on operands d1 and d2 !a[0] 

// ! is an operator on operand a[0] 
 

B >> 1 // >> is an operator on operands B and 1 
 

Operator Types 

Verilog provides many different operator types. Operators can be arithmetic, logical, 

relational, equality, bitwise, reduction, shift, concatenation, or conditional. Some of 

these operators are similar to the operators used in the C programming language. 

Each operator type is denoted by a symbol. The following table shows the complete 

listing of operator symbols classified by category. 

Table: Operator Types and Symbols 
 

Operator Type  Operator Symbol  Operation Performed  Number of Operands 
 

  * multiply two 

  / divide two 

 

Arithmetic 

+ add two 

 

- subtract two   

  % modulus two 

  ** power (exponent) two 

     

  ! logical negation one 

 Logical && logical and two 

  || logical or two 

     

  > greater than two 



 

Relational 

< less than two 

 

>= greater than or equal two   

  <= less than or equal two 

     

  == equality two 

 

Equality 

!= inequality two 

 

=== case equality two   

  !== case inequality two 

     

     

 

 

 ~ bitwise negation one 

 & bitwise and two 

Bitwise | bitwise or two 

 ^ bitwise xor two 

 ^~ or ~^ bitwise xnor two 

    

 & reduction and one 

 ~& reduction nand one 

Reduction 

| reduction or one 

~| reduction nor one  

 ^ reduction xor one 

 ^~ or ~^ reduction xnor one 



    

 >> Right shift Two 

Shift 

<< Left shift Two 

>>> Arithmetic right shift Two  

 <<< Arithmetic left shift Two 

    

Concatenation { } Concatenation Any number 

    

Replication { { } } Replication Any number 

    

Conditional ?: Conditional Three 

    

 

Let us now discuss each operator type in detail. 

 

Arithmetic Operators 

There are two types of arithmetic operators: binary and unary. 

Binary operators 

Binary arithmetic operators are multiply (*), divide (/), add (+), subtract (-), power 

(**), and modulus (%). Binary operators take two operands. 

 

A = 4'b0011; B = 4'b0100; // A and B are register vectors D = 6; E = 

4; F=2// D and E are integers 

 

A * B // Multiply A and B. Evaluates to 4'b1100 
 

D / E // Divide D by E. Evaluates to 1. Truncates any fractional part. A + B // Add A 
and B. Evaluates to 4'b0111 

 



B - A // Subtract A from B. Evaluates to 4'b0001 F = E ** 

F; //E to the power F, yields 16 

 

If any operand bit has a value x, then the result of the entire expression is x. This 

seems intuitive because if an operand value is not known precisely, the result 

should be an unknown. 

 

in1 = 4'b101x; 

 

in2 = 4'b1010; 
 

sum = in1 + in2; // sum will be evaluated to the value 4'bx 

Modulus operators produce the remainder from the division of two numbers. 

They operate similarly to the modulus operator in the C programming 

language. 

13 % 3 // Evaluates to 1 

16 % 4 // Evaluates to 0 

-7 % 2 // Evaluates to -1, takes sign of the first operand 

7 % -2 // Evaluates to +1, takes sign of the first operand 

 

Unary operators 

The operators + and - can also work as unary operators. They are used to specify 

the positive or negative sign of the operand. Unary + or ? operators have higher 

precedence than the binary + or ? operators. 

-4 // Negative 4 
 

+5 // Positive 5 

Negative numbers are represented as 2's complement internally in Verilog. It is 

advisable to use negative numbers only of the type integer or real in expressions. 

Designers should avoid negative numbers of the type <sss> '<base> <nnn> in 

expressions because they are converted to unsigned 2's complement numbers and 

hence yield unexpected results. 

 



//Advisable to use integer or real numbers -10 / 

5// Evaluates to -2 

 

//Do not use numbers of type <sss> '<base> <nnn> 
 

-'d10 / 5// Is equivalent (2's complement of 10)/5 = (232 - 10)/5 
 

 where 32 is the default machine word width.  

 This evaluates to an incorrect and unexpected result 
 

 Logical Operators 

Logical operators are logical-and (&&), logical-or (||) and logical- not (!). Operators 

&& and || are binary operators. Operator ! is a unary operator. Logical operators 

follow these conditions: 

      Logical   operators always evaluate to a 1-bit value, 0 (false), 1 (true), or x    

ambiguous).If an operand is not equal to zero, it is equivalent to a logical 1 (true 

condition). If it is 01equal to zero, it is equivalent to a logical 0 (false condition). 

If any operand bit is x or z, it is equivalent to x (ambiguous condition) and is 

normally treated by simulators as a false condition.Logical operators take 

variables or expressions as operands.Use of parentheses to group logical 

operations is highly recommended to improve readability. Also, the user does 

not have to remember the precedence of operators. 
 

 Logical operations A = 3; 

B = 0;  

A && B // Evaluates to 0. Equivalent to (logical-1 && logical-0) A || B // 
Evaluates to 1. Equivalent to (logical-1 || logical-0) !A// Evaluates to 0. 
Equivalent to not(logical-1) 

 

!B// Evaluates to 1. Equivalent to not(logical-0) 

 

 Unknowns  

A = 2'b0x; B = 2'b10; 
 

A && B // Evaluates to x. Equivalent to (x && logical 1) 

 

 



// Expressions 
 

(a == 2) && (b == 3) // Evaluates to 1 if both a == 2 and b == 3 are true. 

// Evaluates to 0 if either is false. 

 

 Relational Operators 

Relational operators are greater-than (>), less-than (<), greater-than-or-equal-to (>=), 

and less-than-or-equal-to (<=). If relational operators are used in an expression, the 

expression returns a logical value of 1 if the expression is true and 0 if the expression is 

false. If there are any unknown or z bits in the operands, the expression takes a value x. 

These operators function exactly as the corresponding operators in the C programming 

language. 

 A = 4, B = 3  

 X = 4'b1010, Y = 4'b1101, Z = 4'b1xxx 
 

A <= B // Evaluates to a logical 0 
 

A > B // Evaluates to a logical 1 
 

Y >= X // Evaluates to a logical 1 
 

Y < Z // Evaluates to an x 

 

 Equality Operators 

Equality operators are logical equality (==), logical inequality (!=), case equality (===), 

and case inequality (!==) . When used in an expression, equality operators return logical 

value 1 if true, 0 if false. These operators compare the two operands bit by bit, with 

zero filling if the operands are of unequal length. Table below lists the operators. 

It is important to note the difference between the logical equality operators (==, !=) and 

case equality operators (===, !==). The logical equality operators (==, !=) will yield an x if 

either operand has x or z in its bits. However, the case equality operators ( ===, !== ) 

compare both operands bit by bit and compare all bits, including x and z. The result is 1 if 

the operands match exactly, including x and z bits. The result is 0 if the operands do not 

match exactly. Case equality operators never result in an x. 

 

 

 



Table: Equality Operators 

 

Expression Description 

Possible Logical 

Value   

   

a == b a equal to b, result unknown if x or z in a or b 0, 1, x 

   

a != b 

a not equal to b, result unknown if x or z in a or 

0, 1, x 

B   

   

a === b a equal to b, including x and z 0, 1 

   

a !== b a not equal to b, including x and z 0, 1 

   

 

 

 A = 4, B = 3  

 X = 4'b1010, Y = 4'b1101  

 Z = 4'b1xxz, M = 4'b1xxz, N = 4'b1xxx 
 

A == B // Results in logical 0 
 

X != Y // Results in logical 1 
 

X == Z // Results in x 
 

Z === M // Results in logical 1 (all bits match, including x and z) 
 

Z === N // Results in logical 0 (least significant bit does not match) M !== N // 

Results in logical 1 



 Bitwise Operators 

Bitwise operators are negation (~), and(&), or (|), xor (^), xnor (^~, ~^). Bitwise 

operators perform a bit-by-bit operation on two operands. They take each bit in one 

operand and perform the operation with the corresponding bit in the other operand. 

If one operand is shorter than the other, it will be bit-extended with zeros to match 

the length of the longer operand. Logic tables for the bit-by-bit computation are 

shown in Table. A z is treated as an x in a bitwise operation. The exception is the 

unary negation operator (~), which takes only one operand and operates on the bits 

of the single operand. 

Table: Truth Tables for Bitwise Operators 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Examples of bitwise operators are shown below. 

 

 X = 4'b1010, Y = 4'b1101  

 Z = 4'b10x1 
 

~X // Negation. Result is 4'b0101 
 

X & Y // Bitwise and. Result is 4'b1000 
               

X | Y // Bitwise or. Result is 4'b1111 



 

X ^ Y // Bitwise xor. Result is 4'b0111 
 

X ^~ Y // Bitwise xnor. Result is 4'b1000 
 

X & Z // Result is 4'b10x0 

 

It is important to distinguish bitwise operators ~, &, and | from logical operators !, 

&&, ||. Logical operators always yield a logical value 0, 1, x, whereas bitwise 

operators yield a bit-by-bit value. Logical operators perform a logical operation, not a 

bit-by-bit operation. 

 

// X = 4'b1010, Y = 4'b0000 

 

X | Y // bitwise operation. Result is 4'b1010 

 

X || Y // logical operation. Equivalent to 1 || 0. Result is 1. 

 

Reduction Operators 

Reduction operators are and (&), nand (~&), or (|), nor (~|), xor (^), and xnor (~^, ^~). 

Reduction operators take only one operand. Reduction operators perform a bitwise 

operation on a single vector operand and yield a 1-bit result. The difference is that 

bitwise operations are on bits from two different operands, whereas reduction 

operations are on the bits of the same operand. Reduction operators work bit by bit 

from right to left. Reduction nand, reduction nor, and reduction xnor are computed 

by inverting the result of the reduction and, reduction or, and reduction xor, 

respectively. 

 

// X = 4'b1010 

 

&X //Equivalent to 1 & 0 & 1 & 0. Results in 1'b0 

|X//Equivalent to 1 | 0 | 1 | 0. Results in 1'b1 

^X//Equivalent to 1 ^ 0 ^ 1 ^ 0. Results in 1'b0 
 

//A reduction xor or xnor can be used for even or odd parity 

//generation of a vector. 



The use of a similar set of symbols for logical (!, &&, ||), bitwise (~, &, |, ^), and 

reduction operators (&, |, ^) is somewhat confusing initially. The difference lies in 

the number of operands each operator takes and also the value of results 

computed. 

 Shift Operators 

Shift operators are right shift ( >>), left shift (<<), arithmetic right shift (>>>), and 

arithmetic left shift (<<<). Regular shift operators shift a vector operand to the right 

or the left by a specified number of bits. The operands are the vector and the 

number of bits to shift. When the bits are shifted, the vacant bit positions are filled 

with zeros. Shift operations do not wrap around. Arithmetic shift operators use the 

context of the expression to determine the value with which to fill the vacated bits. 

 

// X = 4'b1100 

 

Y = X >> 1; //Y is 4'b0110. Shift right 1 bit. 0 filled in MSB position. 

Y = X << 1; //Y is 4'b1000. Shift left 1 bit. 0 filled in LSB position. 
 

Y = X << 2; //Y is 4'b0000. Shift left 2 bits. 

 

integer a, b, c; //Signed data types 

 

a = 0; 
 

b = -10; // 00111...10110 binary 
 

c = a + (b >>> 3); //Results in -2 decimal, due to arithmetic shift 

Shift operators are useful because they allow the designer to model shift operations, 

shift-and-add algorithms for multiplication, and other useful operations. 

 

 Concatenation Operator 

The concatenation operator ( {, } ) provides a mechanism to append multiple 

operands. The operands must be sized. Unsized operands are not allowed because 

the size of each operand must be known for computation of the size of the result. 

Concatenations are expressed as operands within braces, with commas separating 

the operands. Operands can be scalar nets or registers, vector nets or registers, bit-

select, part-select, or sized constants. 

 



// A = 1'b1, B = 2'b00, C = 2'b10, D = 3'b110 

Y = {B , C} // Result Y is 4'b0010 

Y is 11'b10010110001 Y = {A , B , C , D , 3'b001} // Result 

Y = {A , B[0], C[1]} // Result Y is 3'b101 

 

Replication Operator 

Repetitive concatenation of the same number can be expressed by using a 

replication constant. A replication constant specifies how many times to replicate 

the number inside the brackets ( { } ). 

reg A; 
 

reg [1:0] B, C; 
 

reg [2:0] D; 
 

A = 1'b1; B = 2'b00; C = 2'b10; D = 3'b110; 

 

Y = { 4{A} } // Result Y is 4'b1111 
 

Y = { 4{A} , 2{B} } // Result Y is 8'b11110000 
 

Y = { 4{A} , 2{B} , C } // Result Y is 8'b1111000010 

 

Conditional Operator 

The conditional operator(?:) takes three operands. 

Usage: condition_expr ? true_expr : false_expr ; 

The condition expression (condition_expr) is first evaluated. If the result is true 

(logical 1), then the true_expr is evaluated. If the result is false (logical 0), then the 

false_expr is evaluated. If the result is x (ambiguous), then both true_expr and false_ 

expr are evaluated and their results are compared, bit by bit, to return for each bit 

position an x if the bits are different and the value of the bits if they are the same. 

The action of a conditional operator is similar to a multiplexer. Alternately, it can 

be compared to the if-else expression. 

 
 
 
 



 
 

 

 

 

 

 

 

 

 

 

 

 

Conditional operators are frequently used in dataflow modeling to model 

conditional assignments. The conditional expression acts as a switching control. 

//model functionality of a tristate buffer 
 

assign addr_bus = drive_enable ? addr_out : 36'bz; 

 

//model functionality of a 2-to-1 mux 
 

assign out = control ? in1 : in0; 

 

Conditional operations can be nested. Each true_expr or false_expr can itself be a 

conditional operation. In the example that follows, convince yourself that (A==3) 

and control are the two select signals of 4-to-1 multiplexer with n, m, y, x as the 

inputs and out as the output signal. 

 

assign out = (A == 3) ? ( control ? x : y ): ( control ? m : n) ; 

 

 Operator Precedence 

Having discussed the operators, it is now important to discuss operator precedence. 

If no parentheses are used to separate parts of expressions, Verilog enforces the 

following precedence. Operators listed in Table are in order from highest precedence 

to lowest precedence. It is recommended that parentheses be used to separate 

expressions except in case of unary operators or when there is no ambiguity. 



Table: Operator Precedence 

Operators Operator Symbols Precedence 

   

Unary + - ! ~ 
Highest 
precedence 

   

Multiply, Divide, Modulus * / %  

   

Add, Subtract + -  

   

Shift << >>  

   

Relational < <= > >=  

   

Equality == != === !==  

   

 &, ~&  

Reduction ^ ^~  

 |, ~|  

   

Logical 

&&  

|| 

 

  

   

Conditional ?: Lowest precedence 

   

 





Testbench

• Test benches are used to simulate your design without the need of any 
physical hardware. 

• A test bench is actually just another Verilog file! However, the Verilog you 
write in a test bench is not quite the same as the Verilog you write in your 
designs

• If the number of input signals are very large and/or we have to perform 
simulation several times, then this process can be quite complex, time 
consuming and irritating.

• with the help of testbenches, we can generate results in the form of csv 
(comma separated file), which can be used by other softwares for further 
analysis e.g. Python, Excel and Matlab etc.



Procedure

• Testbenches are written in separate Verilog files 

• A test bench starts off with a module declaration

• A testbench with name ‘half_adder_tb

• Ports of the testbench is always empty i.e. no inputs or outputs are defined 

• After we declare our variables, we instantiate the module we will be testing

• ‘Initial block’ is used , which is executed only once, and terminated when the last line of the block 
executed

• DUT is a very common name for the module to be tested in a test bench



Half adder

Module half_adder( input wire a, b,

Output wire sum, carry);

assign sum = a ^ b;

assign carry = a & b;

endmodule



Half adder test bench

module half_adder_tb; 

reg a, b; 

wire sum, carry;

localparam period = 20;

half_adder UUT (.a(a), .b(b), .sum(sum), .carry(carry));

initial // initial block executes only once

begin // values for a and b

a = 0; b = 0; 

#period; // wait for period 

a = 0; b = 1;

#period;

a = 1; b = 0; 

#period;

a = 1; b = 1;

#period;

end

endmodule



Jk flipflop

module jkff_behave(clk,j,knq,qbar);

input clk,j,k;

output reg q,qbar;

always@(posedge clk)

begin

if(k = 0)

begin

q <= 0;

qbar <= 1;

end



always@(posedge clk)

begin

if(k = 0)

begin

q <= 0;

qbar <= 1;

end

else if(j = 1)

begin

q <= 0;

qbar <= 0;

end



Else if(j = 0 & k = 0)

begin

q <= q;

qbar <= qbar;

end

else if(j = 1 & k = 1)

begin

q <= ~q;

qbar <= ~qbar;

end

end

endmodule



Using case statement
module JKFlipFlop( input J,input K,input clk,output Q, output Qbar  );

reg Q,Qbar;

always@(posedge clk)

begin

case({J,K})

2’b00:Q<=Q;

2’b01:Q<=1’b0;

2’b10:Q<=1’b1;

2’b11:Q<=Qbar;

endcase

end

endmodule



Test Bench

module JK_FlipFlop_TB;

// Inputs

reg J;

reg K;

// Outputs

wire Q;

wire Qbar;

// Instantiate the Unit Under Test (UUT)

JKFlipFlop uut ( .J(J), .K(K), .Q(Q),.Qbar(Qbar)  );



initial begin

// Initialize Inputs

clk=0;

forever #5 clk=~clk

#100  J = 0; K = 0;  

#100  J=0; K=1;

#100  J=1;k=0;

#100  J=1;  K=1;

end

endmodule



Up counter design

Module up_counter(input clk, reset, output[3:0] counter

);

reg [3:0] counter_up;

// up counter

always @(posedge clk or posedge reset)

begin

if(reset)

counter_up <= 4’d0;

else

counter_up <= counter_up + 4’d1;

end 

assign counter = counter_up;

endmodule



Test bench

Module upcounter_testbench();

reg clk, reset;

wire [3:0] counter;

up_counter dut(clk, reset, counter);

initial begin 

clk=0;

forever #5 clk=~clk;

end

initial begin

reset=1;

#20;

reset=0;

end

endmodule



Unit-2 

Gate Level Modeling 

Introduction 

Digital designers are normally familiar with all the common logic gates, their symbols, and their 

working. Flip-flops are built from the logic gates. All other functionally complex and more 

involved circuits can also be built using the basic gates. All the basic gates are available as 

“Primitives” in Verilog. Primitives are generalized modules that already exist in Verilog [IEEE]. 

They can be instantiated directly in other modules. 

And Gate Primitive 

The AND gate primitive in Verilog is instantiated with the following statement: 

and g1 (O, I1, I2, . . ., In); 

Here ‘and’ is the keyword signifying an AND gate. g1 is the name assigned to the specific 

instantiation. O is the gate output; I1, I2, etc., are the gate inputs. The following are 

noteworthy: 

• The AND module has only one output. The first port in the argument list is the output 

port. 

• An AND gate instantiation can take any number of inputs — the upper limit is compiler-

specific. 

• A name need not be necessarily assigned to the AND gate instantiation; this is true of all 

the gate primitives available in Verilog. 

Truth Table of AND Gate Primitive 

The truth table for a two-input AND gate is shown in Table below It can be directly extended to 

AND gate instantiations with multiple inputs. The following observations are in order here: 

Truth table of AND gate primitive 

    

  Input 1 

  0 1 X z 

 
Input 2 

0 0 0 0 0 

1 0 1 X x 

x 0 x X x 

z 0 x X x 



• If any one of the inputs to the AND gate instantiation is in the 0 state, its output is also 
in the 0 state. It is irrespective of whether the other inputs are at the 0, 1, x or z state. 

 

• The output is at 1 state if and only if every one of the inputs is at 1 state. 
 

• For all other cases the output is at the x state. 
 

• Note that the output is never at the z state – the high impedance state. This is true of all 
other gate primitives as well. 

 

Module Structure 

In a general case a module can be more elaborate. A lot of flexibility is available in the 
definition of the body of the module. However, a few rules need to be followed: 
 

• The first statement of a module starts with the keyword module; it may be followed by 
the name of the module and the port list if any. 

 

• All the variables in the ports-list are to be identified as inputs, outputs, or inouts. The 
corresponding declarations have the form shown below: 

 
ƒ  Input a1, a2; 
ƒ  Output b1, b2; 
ƒ  Inout c1, c2; 
 
The port-type declarations here follow the module declaration mentioned above. 
 

• The ports and the other variables used within the body of the module are to be 
identified as nets or registers with specific types in each case. The respective declaration 
statements follow the port-type declaration statements. 

 
Examples: 
 
wire a1, a2, c; 
reg b1, b2; 
 
The type declaration must necessarily precede the first use of any variable or signal in the 
module. 

• The executable body of the module follows the declaration indicated above. 
 

• The last statement in any module definition is the keyword “endmodule”. 
 

• Comments can appear anywhere in the module definition. 



 

Other Gate Primitives 
 
All other basic gates are also available as primitives in Verilog. Details of the facilities and 
instantiations in each case are given in Table below. The following points are noteworthy here: 
 

• In all cases of instantiations, one need not necessarily assign a name to the 
instantiation. It need be done only when felt necessary – say for clarity of circuit 
description. 

 

• In all the cases the output port(s) is (are) declared first and the input port(s) is (are) 
declared subsequently. 

 

• The buffer and the inverter have only one input each. They can have any number of 
outputs; the upper limit is compiler-specific. All other gates have one output each but 
can have any number of inputs; the upper limit is again compiler-specific. 

 
Table for Basic gate primitives in Verilog with details 

Gate Mode of instantiation Output port(s) Input port(s) 

AND and ga ( o, i1, i2, . . . i8); o i1, i2, . . 

OR or gr ( o, i1, i2, . . . i8); o i1, i2, . . 

NAND nand gna ( o, i1, i2, . . . i8); o i1, i2, . . 

NOR nor gnr ( o, i1, i2, . . . i8); o i1, i2, . . 

XOR xor gxr ( o, i1, i2, . . . i8); o i1, i2, . . 

XNOR xnor gxn ( o, i1, i2, . . . i8); o i1, i2, . . 

BUF buf gb ( o1, o2, …. i); o1, o2, o3, . . i 

NOT not gn (o1, o2, o3, . . . i); o1, o2, o3, . . i 

 
 
 
 
 
 
 
 
 
 
 



Example for a typical A-O-I gate circuit 

The commonly used A-O-I gate is shown in Figure 1 for a simple case. The module and the test 

bench for the same are given in Figure 2. The circuit has been realized here by instantiating the 

AND and NOR gate primitives. The names of signals and gates used in the instantiations in the 

module of Figure 2 remain the same as those in the circuit of Figure 1. The module aoi_gate in 

the figure has input and output ports since it describes a circuit with signal inputs and an 

output. The module aoi_st is a stimulus module. It generates inputs to the aoi_gate module and 

gets its output. It has no input or output ports. 

 

/*module for the aoi-gate of figure 1 instantiating the gate primitives – fig 2*/  

module aoi_gate(o,a1,a2,b1,b2); 

input a1,a2,b1,b2;      // a1,a2,b1,b2 form the input //ports of the module 

output o;                   //o is the single output port of the module  

wire o1,o2;               //o1 and o2 are intermediate signals //within the module 

and g1(o1,a1,a2);   //The AND gate primitive has two and g2(o2,b1,b2); 

        // instantiations with assigned //names g1 & g2. 

nor g3(o,o1,o2);     //The nor gate has one instantiation with assigned name g3. 

endmodule 

//Test-bench for the aoi_gate above 

module aoi_st; 

reg a1,a2,b1,b2; 

 

//specific values will be assigned to a1,a2,b1, // and b2 and these connected 

//to input ports of the gate insatntiations; 



//hence these variables are declared as reg 

wire o; 

initial 

begin 

a1 = 0; 

a2 = 0; 

b1 = 0; 

b2 = 0; 

#3 a1 = 1; 

#3 a2 = 1; 

#3 b1 = 1; 

#3 b2 = 0; 

#3 a1 = 1; 

#3 a2 = 0; 

#3 b1 = 0; 

end 

initial #100 $stop;//the simulation ends after //running for 100 tu's. 

initial $monitor($time , " o = %b , a1 = %b , a2 = %b , b1 = %b ,b2 = %b ",o,a1,a2,b1,b2); 

aoi_gate gg(o,a1,a2,b1,b2); 

endmodule 

 

Tri-State Gates 

Four types of tri-state buffers are available in Verilog as primitives. Their outputs can be turned 
ON or OFF by a control signal. The direct buffer is instantiated as 
Bufif1 nn (out, in, control); 
 
The symbol of the buffer is shown in Figure 
1. We have 

• out as the single output variable 

• in as the single input variable and 

• control as the single control signal 
variable. 

 
When 
control = 1, 
out = in. 

 
When 
control = 0, 
out=tri-stated 



 
out is cut off from the input and tri-stated. The output, input and control signals should 
appear in the instantiation in the same order as above. Details of bufif1 as well as the other 
tri-state type primitives are shown in Table 1. 
 In all the cases shown in Table 1, out is the output; in is the input, and control, the control 
variable. 

 
Array of Instances of Primitives 

The primitives available in Verilog can also be instantiated as arrays. A judicious use of such 
array instantiations often leads to compact design descriptions. A typical array instantiation 
has the form 
 
and gate [7 : 4 ] (a, b, c); 
 
where a, b, and c are to be 4 bit vectors. The above instantiation is equivalent to combining 
the following 4 instantiations: 
 
and gate [7] (a[3], b[3], c[3]), gate [6] (a[2], b[2], c[2]), gate [5] (a[1], b[1], c[1]), gate [4] 
(a[0], b[0], c[0]); 
 
The assignment of different bits of input vectors to respective gates is implicit in the basic 
declaration itself. A more general instantiation of array type has the form 
 
and gate[mm : nn](a, b, c); 
 



where mm and nn can be expressions involving previously defined parameters, integers and 
algebra with them. The range for the gate is 1+ (mm-nn); mm and nn do not have 
restrictions of sign; either can be larger than the other. 
 

Gate Delays 

Until now, we described circuits without any delays (i.e., zero delay). In real circuits, logic 

gates have delays associated with them. Gate delays allow the Verilog user to specify delays 

through the logic circuits. Pin-to-pin delays can also be specified in Verilog. 

Rise, Fall, and Turn-off Delays 

There are three types of delays from the inputs to the output of a primitive gate. 

Rise delay 

The rise delay is associated with a gate output transition to a 1 from another value. 

 

 

 

 

 

 

Fall delay 

The fall delay is associated with a gate output transition to a 0 from another value. 

 

 

 

 

 

 

Turn-off delay 

The turn-off delay is associated with a gate output transition to the high impedance 

value (z) from another value. 

If the value changes to x, the minimum of the three delays is considered. 

Three types of delay specifications are allowed. If only one delay is specified, this 

value is used for all transitions. If two delays are specified, they refer to the rise and 

fall delay values. The turn-off delay is the minimum of the two delays. If all three 

delays are specified, they refer to rise, fall, and turn-off delay values. If no delays are 

specified, the default value is zero.  



Example--Types of Delay Specification 
 
 //Delay of delay_time for all transitions  
and #(delay_time) a1(out, i1, i2); 
 
 // Rise and Fall Delay Specification. 
 
and #(rise_val, fall_val) a2(out, i1, i2); 
 
// Rise, Fall, and Turn-off Delay Specification 
 
bufif0 #(rise_val, fall_val, turnoff_val) b1 (out, in, control); 
 
 
Examples of delay specification are shown below. 
 
and #(5) a1(out, i1, i2); //Delay of 5 for all transitions and #(4,6) a2(out, i1, i2); // Rise 
= 4, Fall = 6 
 
bufif0 #(3,4,5) b1 (out, in, control); // Rise = 3, Fall = 4, Turn-off = 5 
 
Dataflow Modeling 
 
Introduction 
For small circuits, the gate-level modeling approach works very well because the 

number of gates is limited and the designer can instantiate and connect every gate 

individually. Also, gate-level modeling is very intuitive to a designer with a basic 

knowledge of digital logic design. However, in complex designs the number of gates is 

very large. Thus, designers can design more effectively if they concentrate on 

implementing the function at a level of abstraction higher than gate level. Dataflow 

modeling provides a powerful way to implement a design. Verilog allows a circuit to 

be designed in terms of the data flow between registers and how a design processes 

data rather than instantiation of individual gates. Later in this chapter, the benefits of 

dataflow modeling will become more apparent. 

With gate densities on chips increasing rapidly, dataflow modeling has assumed great 

importance. No longer can companies devote engineering resources to handcrafting 

entire designs with gates. Currently, automated tools are used to create a gate-level 
circuit from a dataflow design description. This process is called logic synthesis. 

Dataflow modeling has become a popular design approach as logic synthesis tools 

have become sophisticated. This approach allows the designer to concentrate on 
optimizing the circuit in terms of data flow. For maximum flexibility in the design 

process, designers typically use a Verilog description style that combines the concepts 
of gate-level, data flow, and behavioral design. In the digital design community, the 

term RTL (Register Transfer Level) design is commonly used for a combination of 

dataflow modeling and behavioral modeling. 

 



2 to 4 Decoder



EXAMPLE :2 to 4 Decoder

module 2 to 4 dec (Z,A,B,Enable);

input A,B,Enable;

output [3:0] Z;

wire Abar,Bbar;

not V0(Abar,A);

not V1(Bbar,B);

nand N0 (Z[0],Enable,Abar,Bbar);

nand N1 (Z[1],Enable,Abar,B);

nand N2(Z[2],Enable,A,Bbar);

nand N3 (Z[3],Enable,A,B);

end module



D Flip flop

module dff_from_nand(Q,Q_BAR,D,CLK);

input D,CLK;

output Q,Q_BAR;

wire X,Y; 

nand U1 (X,D,CLK) ; 

nand U2 (Y,X,CLK) ; 

nand U3 (Q,Q_BAR,X); 

nand U4 (Q_BAR,Q,Y);

end module



MASTER SLAVE FLIP FLOP



•







PRIORITY ENCODER



PARITY GENERATOR



Implicit Nets
• If a net is not declared in a verilog model,by default it is implicitly 

declared as 1 bit wire.

• For this purpose we use compiler directive i.e default_nettype

• Syntax 

default_nettype net_type;

• Example 

default_nettype wand;

• With the above declaration all uncleared nets are type wand.









Verilog code gate level 
Module example (Q,A);

output Q;

input [3:0]A,B;

xor g1(w,A[0],B[0]);

xor g2(X,A[1],B[1]);

xor g3(Y,A[2],B[2]);

xor g4(Z,A[3],B[3]);

or g5(Q,W,X,Y,Z);

end module



Full adder



Verilog program









Example aoi gate



Verilog code



Test bench for aoi gate
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UNIT-IV DATAFLOW LEVEL AND SWITCH LEVEL MODELLING: Introduction, continuous 

assignment structures, delays and continuous assignments, assignment to vectors, basic transistor 

switches, CMOS switch, Bidirectional gates and time delays with switch primitives, instantiations 

with strengths and delays, strength contention with trireg nets 

4.1 Introduction 

Gate level design description makes use of the gate primitives available in Verilog. These 

are repeatedly and judiciously instantiated to achieve the full design description. Digital 

designers familiar with the basic logic gates and SSI / MSI circuits can describe the desired 

target circuit in terms of them on paper and proceed with the design description based on them. 

This was the approach followed in the last two chapters; it is practical for comparatively smaller 

designs – say those involving tens of gates. One can define modules in terms of primitives 

involving tens of gates and instantiate them in macro-modules. This increases the complexity of 

designs that can be handled by one order. Beyond that the gate level design description becomes 

too complicated to be practical.  

Data flow level description of a digital circuit is at a higher level. It makes the circuit 

description more compact as compared to design through gate primitives. We have a number of 

operands and operations representing the simulations directly or indirectly. The operations are 

carried out on the operand(s) in singles or in combinations. The results are assigned to nets. The 

operand-operation-assignments representing data flow are carried out repeatedly to complete the 

design description. Further, these can be combined judiciously with the gate instantiations 

wherever necessary. With such combinations, design description of a comprehensive nature can 

be accommodated. 

4.2 CONTINUOUS ASSIGNMENT STRUCTURES  

A continuous assignment is the most basic statement in dataflow modeling, used to drive a 
value onto a net. This assignment replaces gates in the description of the circuit and describes the 
circuit at a higher level of abstraction. The assignment statement starts with the keyword assign. 
The syntax of an assign statement is as follows.  
continuous_assign ::= assign [ drive_strength ] [ delay3 ] list_of_net_assignments ; 

A simple two input AND gate in data flow format has the form  

assign c = a && b; 

Here  “assign” is the keyword carrying out the assignment operation. This type of assignment is called a 

continuous assignment.  

a and b are operands – typically single-bit logic variables.  

“&&” is a logic operator. It does the bit-wise AND operation on the two operands a and b.  

“=” is an assignment activity carried out.  

c is a net representing the signal which is the result of the assignment.  



 

In general, an operand can be of any one of the following types:  

 A constant number [including real].  

 Net of a scalar or vector type including part of a vector.  

 Register variable of a scalar or vector type including part of a vector. 

 Memory element. 

A call to a function that returns any of the above. The function itself can be a user-defined or of a 

system type .  

There are other types of operators as well . All types of combinational circuits can be 

modeled using continuous assignments. One need not necessarily resort to instantiation of gate 

primitives.  

An AND gate module which uses the above assignment is shown in Figure 4.1. The test 

bench for the same is shown in Figure 4.2, and the waveforms of nets a, b, and c obtained with 

the simulation are shown in Figure 4.3. [The simulation software used has the facility to capture 

the waveforms of selected signals in the “run” phase; this has been invoked to get the waveforms 

in Figure 4.3. No separate $monitor command is included in the test bench of Figure 4.2. The 

same approach has been adopted with many of the test benches.  

module andgdf(c,a,b); 
output c; 
input a,b; 
wire c; 
assign c = a&&b; 
endmodule 

fig 4.1 :A module with an AND gate at the data flow level. 

//TESTBENCH 
module tst_andgdf;  
reg a,b;  
wire c; 
 initial  

begin  
a = 1’b0; b = 1’b0; #4 a = 1’b1;  
#4 b = 1’b1; #4 a = 1’b0; #4 b = 1’b0; #4 a = 1’b1;  

end  
andgdf g1(c,a,b);  
initial #20 $stop;  
endmodule 

fig 4.2 A test bench for the above module 

 

 



 

Fig4.3  :Waveforms of nets a, b, and c obtained with the simulation of the module 

Fig 4.4 :  

Multiple assignments can be carried out through a direct extension of the structure adopted in the 

above case. Consider the AOI gate in Figure 4.4. A few patterns of the assignments for the 

circuit are given in Figure 4.5 to Figure 4.7. 

 

 assign e = a&&b, f = c&&d, g1 = e|f, g = ~g1; 

Figure 4.5 A data flow level assignment statement to realize the A-O-I gate in Figure 

 assign e = a & b, f = c & d; assign g1 = e|f, g = ~g1; 

Figure 4.6 Another set of data flow level assignment statements to realize the A-O-I gate in Figure 4.4. 

assign e = a & b; 
assign f = c & d; 
assign g1 = e ! f; 
assign g = ~g1; 

 
Figure 4.7 Yet another set of data flow level assignment statements to realize the A-O-I gate in Figure 

4.4 

 

 

 



Observations:  

 The semicolon terminates an assignment statement. Commas separate  different assignments 

in an assignment statement.  

 “|” is the bit-wise OR operator and “~” the bit-wise negation operator in Verilog.  

 All the quantities in the left-hand side of a continuous assignment have to be of net type. Thus 

e, f, g, and g1 have to be declared as nets.  

 All the operations in an assignment are evaluated whenever any of the operands in the 

assignment changes value. Further, all the assignments are carried out concurrently. Hence the 

order of the assignments or the statements is immaterial.  

 The right-hand sides of assignment statements can be nets, regs, or function calls. Here a, b, c, 

and d can be nets or regs. All other variables have to be nets.  

The module for the A-O-I gate of Figure 4.4 is given in Figure 4.8 – it is formed around the assignment 

statement of Figure 4.5. The same can be tested through a test bench. 

4.2.1 Assignment and Net Declarations  

The assignment statement can be combined with the net declaration itself making the assignment 

implicit in the net declaration itself. Thus the two statements  

wire c;  

assign c = a & b;  

can be combined as  

wire c = a & b;  

The above simplification cannot be carried over to multiple declarations. With this provison, the module 

of Figure 4.8 can be modified as shown in Figure 4.9. 

 In the modules of Figures 4.8 and 4.9, a, b, c, and d are declared as input and g as output. These would 

be taken as nets if there are no separate declarations concerning their types.  

However, the intermediate quantities – e, f, and g1– should be declared as wire. Synthesized version of 

the A-O-I circuit is shown in Figure 4.10.  

module aoi2(g,a,b,c,d);  

output g;  

input a,b,c,d; 

 wire e,f,g1,g;  

assign e = a && b,f = c && d, g1 = e||f, g=~g1; 

 endmodule  

Figure 4.8 A compact description of the AOI module at the data flow level.  

 



module aoi3(g,a,b,c,d);  

output g;  

input a,b,c,d;  

wire g;  

wire e = a && b;  

wire f = c && d;  

wire g1 = e||f;  

assign g = ~g1; 

 endmodule  

Figure 4.9 Alternate design module to realize the A-O-I gate in Figure 4.4. 

 

4.2.2 Continuous Assignments and Strengths 

A net to which a continuous assignment is being made can be assigned strengths for its logic 

levels. The procedure is akin to the strength allocation to the outputs of primitives. The AOI gate of 

Figure 4.9 is modified with strength allocations to the output and is shown in Figure 4.11. The 

assignment to g can be combined with the wire declaration into a single statement as  

wire (pull1, strong0)g = ~g1; 

As mentioned earlier, one can have only one assignment in the statement here. In a bigger design, g in 

Figure 4.11 can be assigned to other expressions or primitives also. Any resulting contention in the 

output values will be resolved on the lines.  

module aoi4 (g, a, b, c, d);  
output g;  
input a, b, c, d;  
wire g;  
wire e = a &&b;  
wire f = c &&d;  



wire g1 = e || f;  
assign (pull1, strong0)g = ~g1;  
endmodule  

 

Figure 4.11 The module of Figure 5.9 modified with strength allocation to the output. 

4.3 DELAYS AND CONTINUOUS ASSIGNMENTS  

Delays can be incorporated at the data flow level in different ways . Consider the 

combination of statements in Figure 4.12. The assignment takes effect with a time delay of 2 

time steps. If a or b changes in value, the program waits for 2 time steps, computes the value of c 

based on the values of a and b at the time of computation, and assigns it to c. In the interim 

period, a or b may change further, but c changes and takes the new value only 2 time steps after 

the change in a or b initiates it. Typical waveforms for a, b, and c are shown in Figure 4.13. Note 

that the changes in a and b of duration less than 2 time steps are ignored vis-à-vis assignment to 

the net c. The following may be noted with respect to the waveforms:  

 a changes at 0 ns, 2 ns, 5 ns, 8 ns, 9 ns, 12 ns and 13 ns; 

 b changes at 0 ns, 2 ns, 5 ns, 8 ns and 13 ns. 

 All these trigger changes to c.  

 In every case change to c comes into effect with a time delay of 2 time steps – that 

is, at the 2nd, 4th, 7th, 8th, 10th, 11th, 14th and 15th ns, respectively.  

 Whenever c changes, its new value is decided by the values of a and b at that 

instant of time. In effect, c changes at 2nd, 4th and 7th ns only. 

 

wire c, a, b;  

assign #2 c = a & b;  

Figure 4.12 Illustration of combining delays with assignments. 

 

 

 

FIG 4.13 Waveforms of signals a, b, and c for the design segment of Figure 5.12 

 

 

 



The program segment in Figure 4.14 also gives the same output as shown in Figure 4.13. If the 

time delay is in the net and not in the assignment proper, its effect is not any different. Consider the 

program segment in Figure 4.15. Here the changes in the values of d are computed immediately 

following those in a and b. The assignment takes effect immediately. The delay in the net c causes a 

delay of 2 time steps in the assignment to c. Such a delay is not present for d. Typical waveforms for the 

program segment are shown in Figure 4.15.  

Note the following:  

 a changes at 2 ns, 5 ns, 8 ns, 9 ns, 12 ns and 13 ns; 

 b changes at 2 ns, 5 ns, 8 ns and 13 ns.  

 All these trigger changes to c and d also.  

 In every case, change to c comes into effect with a time delay of 2 time steps  that is, in 

effect, c changes at 2nd, 4th and 7th ns only.  

 Whenever c changes, its new value is decided by the values of a and b at that instant of 

time.  

 In every case, changes to d come into effect immediately. 

wire a, b; 

wire #2 c = a & b; 

fig 4.14 :Alternate description for the program segment of Figure 5.10. 

wire a, b, d; 

wire #2 c; 

assign c = a & b;  

assign d = a & b; 

Figure 4.15 Illustration of combining delays with assignments. 

 

Figure 4.16 Waveforms of Signalsa,b,c,anddfor the design segment of Figure 5.15. 

 



 

4.4 ASSIGNMENT TO VECTORS  

The continuous assignments are equally applicable to vectors. A single statement can describe 

operations involving vectors wherever possible. This is illustrated in the adder module in Figure 4.17, 

which adds two 8-bit numbers. Here it is assumed that the sum is also of 8 bits.  

However to account for the possibility of a carry bit being generated in the course of the 

addition process, it is desirable to increase the vector size of c by one bit. 

4.4.1 Concatenation of Vectors  

 One can concatenate vectors, scalars, and part vectors to form other vectors.  

 The concatenated vector is enclosed within braces.  

 Commas separate the components –scalars, vectors, and part vectors. 

 If a and b are 8- and 4-bit wide vectors, respectively and c is a scalar  

{a, b, c} 

stands for a concatenated vector of 13 bits width. The vector components are formed in the order 

shown – c is the least significant bit and a[7] the most significant bit and the other bits are in between in 

the order specified. The concatenation can be with selected segments of vectors also. 

 For example,  

{a(7:4), b(2:0)}  

represents a 7-bit vector formed by combining the 4 most significant bits of vector a with the 3 least 

significant bits of vector b.  

The size of each operand within the braces has to be specified fully to form the concatenated vector. 

Hence unsized constant numbers cannot be used as operands here. 

Example 5.1 Eight-Bit Adder 

Figure 4.18 shows the design description of an 8-bit adder, where the output vector is formed 

directly by concatenation.  

The adder takes a carry input and gives out a carry output. The adder module here can form the 

“seed” adder block in a multi-byte adder chain. 

module add_8(a,b,c); 

 input[7:0]a,b; 

 output[7:0]c;  

assign c = a + b ;  

endmodule 

 

Figure 4.17 An adder module at data flow level where the nets are vectors. 

 



 

module add_8_c(c,cco,a,b,cci); 
 input[7:0]a,b;  
output[7:0]c; 
 input cci; 
 output cco;  
assign {cco,c} = (a + b + cci); 
 endmodule  
 

Figure 4.18 A complete 8-bit adder module at data flow level. 

When it is necessary to replicate vectors, scalars, etc., to form other vectors, the same can be 

arrived at in a compact manner using the repetition multiplier again through concatenation. Thus,  

{2{p}} represents the concatenated vector {p, p}  

{2{p}, q} represents the concatenated vector {p, p, q}.  

The two statements  

assign GND=supply0; 

p={8{GND}};  together ground the 8 bits of the vector p.  

Concatenation operation can be nested to form bigger vectors when component combinations are 

repeated. For example,  

{a, 3 {2{b , c}, d}} 

is equivalent to the vector  

{a, b, c, b, c, d, b, c, b, c, d, b, c, b, c, d } 

 

ALU  

Figure 4.20 shows an ALU module. It is built around a single executable statement present as a 

continuous assignment. A test bench for the ALU is also shown in the figure.  

The synthesized circuit is shown in Figure 4.21. Results of running the test bench are shown in 

Figure 4.22. Some of the combinational circuit operations required are realized inside the “modgen” 

blocks of the FPGA used. 

 The nature of the ALU description in the module decides the translation into circuit. Contrast 

this with the ALU considered at the gate level of design where each functional block is instantiated 

separately and the selected set of outputs steered to the final output.  

Each such instantiated module translates into a separate circuit block. Their outputs are mux’ed 

into the final output vector.  



There is a one-to-one correspondence between the elements of the design description and their 

respective realizations 

module alu_df1 (d, co, a, b, f,cci);      //a SIMPLE ALU FOR ILLUSTRATION PURPOSES  

output [3:0] d;  

output co; 

 wire[3:0]d; 

wire co;  

input cci;  

input [3 : 0 ] a, b;  

input [1 : 0] f;               //f is a two-bit function select input; 

assign {co,d}=(f==2’b00)?(a+b+cci):((f==2’b01)?(a-b) :((f==2’b10)? {1’bz,a^b}:{1’bz,~a}));    

/*co is the carry bit in case of addition; it is the borrow bit in case of subtraction. In the other two 

cases, co is not required. Hence it is assigned z value.*/  

endmodule  

 

//test-bench 

module tst_aludf1;  
reg [3:0]a,b;  
reg[1:0] f; 
 reg cci; 
 wire[3:0]d; 
 wire co;  
alu_df1 aa(d,co,a,b,f,cci);  

initial  

begin  

cci= 1’b0; f = 2’b00; a = 4’b0;  

b = 4’h0;  

end  

always  

begin 

#2 cci = 1’b0; f = 2’b00;a = 4’h1; b = 4’h0; #2 cci = 1’b1;f = 2’b00; a = 4’h8;b = 4’hf; #2 cci = 1’b1;f = 

2’b01;a = 4’h2;b = 4’h1; #2 cci = 1’b0;f = 2’b01;a = 4’h3;b = 4’h7; #2 cci = 1’b1;f = 2’b10;a = 4’h3;b = 4’h3; 

#2 cci = 1’b1;f = 2’b11;a = 4’hf;b = 4’hc; 

 end  

initial $monitor($time, “ cci = %b , a= %b ,b = %b , f = %b ,d =%b ,co= %b “,cci ,a,b,f,d,co);  

initial #30 $stop;  

endmodule  

Figure 4.20 A 4-bit 4-function ALU and a test bench for the same. 



 

 

Figure 4.21 Synthesized circuit of the ALU in Example 4.18. 

# 0 cci = 0 , a= 0000 ,b = 0000 ,f = 00 ,d =0000 ,co= 0 

# 2 cci = 0 , a= 0001 ,b = 0000 ,f = 00 ,d =0001 ,co= 0 

# 4 cci = 1 , a= 1000 ,b = 1111 ,f = 00 ,d =1000 ,co= 1 

# 5 cci = 1 , a= 0010 ,b = 0001 ,f = 01 ,d =0001 ,co= 0 

# 8 cci = 0 , a= 0011 ,b = 0111 ,f = 01 ,d =1100 ,co= 1 #10 cci = 1 , a= 0011 ,b = 0011 ,f = 10 ,d =0000 ,co= z 

#12 cci = 1 , a= 1111 ,b = 1100 ,f = 11 ,d =0000 ,co= z #14 cci = 0 , a= 0001 ,b = 0000 ,f = 00 ,d =0001 ,co= 

0 #15 cci = 1 , a= 1000 ,b = 1111 ,f = 00 ,d =1000 ,co= 1 #18 cci = 1 , a= 0010 ,b = 0001 ,f = 01 ,d =0001 

,co= 0 #20 cci = 0 , a= 0011 ,b = 0111 ,f = 01 ,d =1100 ,co= 1 #22 cci = 1 , a= 0011 ,b = 0011 ,f = 10 ,d 

=0000 ,co= z #24 cci = 1 , a= 1111 ,b = 1100 ,f = 11 ,d =0000 ,co= z #25 cci = 0 , a= 0001 ,b = 0000 ,f = 00 

,d =0001 ,co= 0 #28 cci = 1 , a= 1000 ,b = 1111 ,f = 00 ,d =1000 ,co= 1 

Figure 4.22 Results of running the test bench for the ALU module in Figure 4.20 

 

 

 



basic transistor switches, CMOS switch, Bidirectional gates and time delays with switch primitives, 

instantiations with strengths and delays, strength contention with trireg nets 

Introduction  

In today’s environment the MOS transistor is the basic element around which a VLSI is 

built. Designers familiar with logic gates and their configurations at the circuit level may choose 

to do their designs using MOS transistors.  Verilog has the provision to do the design description 

at the switch level using such MOS transistors.  

Switch level modeling forms the basic level of modeling digital circuits.  The switches 

are available as primitives in Verilog; they are central to design description at this level. Basic 

gates can be defined in terms of such switches. By repeated and successive instantiation of such 

switches, more involved circuits can be modeled – on the same lines as was done with the gate 

level primitives. 

  

BASIC TRANSISTOR SWITCHES  

Consider an NMOS transistor of the depletion type. When used in a digital circuit, it can be in 

one of three modes:  

 VG < VS where VG and VS are the gate and source voltages with respect to the drain: 

The transistor is OFF and offers very high impedance across the source and the drain. It 

is in the z state.  

 VG = VS: The transistor is in the active region. It presents a resistance between the 

source and the drain. The value depends on the technology. Such a resistive state of the 

transistor can be modeled in Verilog. A transistor in this mode can be represented as a 

resistance in Verilog – as pull1 or pull0 depending on whether the drain is connected to 

supply1 or source is connected to supply0.  

 VG > VS: The transistor is fully turned on. It presents very low resistance between the 

source and drain.  

An enhanced-mode NMOS transistor also has the above three modes of operation.  

 It is OFF when VG = VS. It is moderately ON or in the active region when VG is slightly 

greater than VS, representing a resistive (pull1 or pull0) mode of operation. When VG is 

sufficiently greater than VS, the transistor is in the on state representing very low 

resistance. Similar modes are possible for the PMOS transistor also.  

 

 
 
 
 
 
 
 



 
Basic Switch Primitive  

Different switch primitives are available in Verilog.  

Consider an nmos switch. A typical instantiation has the 

form  

nmos (out, in, control); 

 nmos – a keyword – represents an NMOS transistor 

functioning as a switch.  

 The switch has three terminals – in, out, and 

control.  

 

 When the control input is at 1 (high) state, the switch is on. It connects the input 

lead to the output side and offers zero impedance.  

 When the control input is low, the switch is OFF and output is left floating (z state).  

 If the control is in the z or the x state, output may take corresponding values.  

 
The keyword pmos represents a PMOS transistor functioning as a switch.  

The PMOS switch has three terminals (see Figure 2).  

A typical instantiation of the switch has the form  

pmos (out, in, control); 

 When the control is at 1 (high) state, the switch is off. Output 

is left floating.  

 When control is at 0 (low) state, the switch is on, input is connected to output, and output is 

at the same state as input. 

Resistive Switches  

nmos and pmos represent switches of low impedance in the on-state. rnmos and rpmos represent 

the resistive counterparts of these respectively. Typical instantiations have the form  

rnmos (output1, input1, control1);  

rpmos (output2, input2, control2);  

 The rnmos if the control1 input is at 1 (high) state, the switch is ON and functions as a 

definite resistance. It connects input1 to output1 through a resistance. When control1 is at 

the 0 (low) state, the switch is OFF and leaves output1 floating.  

 The rpmos switch is ON when control2 is at 0 (low) state. It inserts a definite resistance 

between the input and the output signals but retains the signal value.  

rpmos and rnmos are resistive switches, they reduce the signal strength when in the on state. The 

reduced strength is mostly one level below the original strength.  

The rpmos and rnmos switches function as unidirectional switches; the signal flow is from the input 

to the output side. 

 



pullup and pulldown  
A MOS transistor functions as a resistive element when in the active state. Realization of 

resistance in this form takes less silicon area in the IC as compared to a resistance realized directly. 
pullup and pulldown represent such resistive elements.  

A typical instantiation here has the form  

pullup (x); 

Here the net x is pulled up to the supply1 through a resistance. Similarly, the instantiation  

pulldown (y); 

pulls y down to the supply0 level through a resistance. The pullup and pulldown primitives can be 
used as loads for switches or to connect the unused input ports to VCC or GND, respectively. They 
can also form loads of switches in logic circuits. 

The default strengths for pullup and pulldown are pull1 and pull0 respectively. One can also specify 
strength values for the respective nets. For example,  

pullup (strong1) (x) 

specifies a resistive pullup of net x to supply1. One can also assign names to the pullup and 
pulldown primitives. Thus  

pullup (strong1) rs(x) 

represents an instantiation of pullup designated rs having strength strong1. 

 
CMOS SWITCH  
 

A CMOS switch is formed by connecting a PMOS and an NMOS switch in parallel – the input 
leads are connected on the one side and the output leads are connected together on the other side. 
Figure 10.15 shows the switch so formed. It has two control inputs:  

 N_control turns ON the NMOS transistor and keeps it ON when it is in the 1 state.  

 P_control turns ON the PMOS transistor and keeps it ON when it is in the 0 state.  

 

 

 

 



 

The CMOS switch is instantiated as shown below.  

cmos csw (out, in, N_control, P_control ); 

Significance of the different terms is as follows:  

 

cmos: The keyword for the switch instantiation  

csw: Name assigned to the switch in the instantiation  

out: Name assigned to the output variable in the instantiation  

in: Name assigned to the input variable in the instantiation  

N_control: Name assigned to the control variable of the NMOS transistor in the instantiation  

P_control: Name assigned to the control variable of the PMOS transistor in the instantiation 

 

module cmos(out,in,nctr,pctr); 

input in,nctr,pctr; 

output out; 

nmos gn(out,in,nctr); 

pmos(out,in,pctr); 

endmodule 

BI-DIRECTIONAL GATES  

Verilog has a set of primitives for bi-directional switches as well. They connect the nets on either 

side when ON and isolate them when OFF. The signal flow can be in either direction. None of the 

continuous-type assignments at higher levels dealt with so far has a functionality equivalent to the bi-

directional gates. There are six types of bi-directional gates.  

 tran     rtran  

 tranif1    rtanif1  

 tranif0     rtranif0  

tran and rtran  

The tran gate is a bi-directional gate of two ports. When instantiated, it connects the two ports directly. 

Thus the instantiation  

tran (s1, s2); 

connects the signal lines s1 and s2. Either line can be input, inout or output.  

rtran is the resistive counterpart of tran. 



 

tranif1 and rtranif1  

tranif1 is a bi-directional switch turned ON/OFF through a control line. It is in the ON-state when 

the control signal is at 1 (high) state. When the control line is at state 0 (low), the switch is in the OFF 

state. A typical instantiation has the form  

tranif1 (s1, s2, c ); 

Here c is the control line. If c=1, s1 and s2 are connected and signal transmission can be in either 

direction.  

rtranif1 is the resistive counterpart of tranif1. It is instantiated in an identical manner. 

tranif0 and rtranif0 

tranif0 and rtranif0 are again bi-directional switches. The switch is OFF if the control line is in the 1 (high) 

state, and it is ON when the control line is in the 0 (low) state. A typical instantiation has the form  

tranif0 (s1, s2, c); 

With the above instantiation, if c = 0, s1 and s2 are connected and signal transmission can be in either 

direction. If c = 1, the switch is OFF and s1 and s2 are isolated from each other.  

rtranif0 is the resistive counterpart of tranif0. 

 



 

 

TIME DELAYS WITH SWITCH PRIMITIVES  

Propagation delays can be specified for switch primitives on the same lines as was done with the 

gate primitives in Chapter 5. For example, an NMOS switch instantiated as  

nmos g1 (out, in, ctrl ); 

has no delay associated with it. The instantiation  

nmos (delay1) g2 (out, in, ctrl ); 

has delay1 as the delay for the output to rise, fall, and turn OFF. The instantiation  

nmos (delay_r, delay_f) g3 (out, in, ctrl ); 

has delay_r as the rise-time for the output. delay_f is the fall-time for the output. The turn-off time is 

zero. The instantiation  

nmos (delay_r, delay_f, delay_o) g4 (out, in, ctrl ); 

has delay_r as the rise-time for the output. delay_f is the fall-time for the output delay_o is the time to 

turn OFF when the control signal ctrl goes from 0 to 1. Delays can be assigned to the other uni-

directional gates (rcmos, pmos, rpmos, cmos, and rcmos) in a similar manner. Bi-directional switches do 

not delay transmission – their rise- and fall-times are zero. They can have only turn-on and turn-off 

delays associated with them. tran has no delay associated with it.  

tranif1 (delay_r, delay_f) g5 (out, in, ctrl ); 

represents an instantiation of the controlled bi-directional switch. When control changes from 0 to 1, 

the switch turns on with a delay of delay_r. When control changes from 1 to 0, the switch turns off with 

a delay of delay_f.  

transif1 (delay0) g2 (out, in, ctrl ); 

represents an instantiation with delay0 as the delay for the switch to turn on when control changes from 

0 to 1, with the same delay for it to turn off when control changes from 1 to 0. When a delay value is not 

specified in an instantiation, the turn-on and turn-off are ideal that is, instantaneous. Delay values 

similar to the above illustrations can be associated with rtranif1, tranif0, and rtranif0 as well. 

 

 

 

 

 

 



 

 

INSTANTIATIONS WITH STRENGTHS AND DELAYS  

In the most general form of instantiation, strength values and delay values can be combined. For 

example, the instantiation  

nmos (strong1, strong0) (delay_r, delay_f, delay_o ) gg (s1, s2, ctrl) ; 

means the following:  

 It has strength strong0 when in the low state and strength strong1when in the high state.  

 When output changes state from low to high, it has a delay time of delay_r.  

 When the output changes state from high to low, it has a delay time of delay_f.  

 When output turns-off it has a turn-off delay time of delay _o.  

rnmos, pmos, and rpmos switches too can be instantiated in the general form in the same manner. The 

general instantiation for the bi-directional gates too can be done similarly. 

STRENGTH CONTENTION WITH TRIREG NETS :  

 nets declared as trireg can have capacitive storage. Such storage can be assigned one of three 

strengths – large, medium, or small.  

 Driving such a net from different sources can lead to contention ,the relative strength levels of the 

sources also have a say in the signal level taken by the net. 

  

 



  

 

 

 

 

 



 

 

RAM cell :  

The figure shows a basic ram cell with facilities for writing data, storing data, and reading data. When 

switch sw2 is on, qb - the output of inverter g1 - forms the input to the inverter g2 and vice versa. The 

g1-g2 combination functions as a latch and freezes the last state entry before SW2 turns on. The step-

by-step function of the cell is as follows: • When WSb (write/store) is high, switch SW1 is ON, and switch 

SW2 OFF. With Sw1 on, input Din is connected to the input of gate g1 and remains so connected. • 

When WSb goes low, din is isolated, since SW1 is OFF. But SW2 is ON and the data remains latched in 

the latch formed by g1-g2. In other words the data Din is stored in the RAM cell formed by g1-g2. • 

When RD (Read) goes active (=1), the latched state is available as output Do. Reading is normally done 

when the latch is in the stored state. 

 

 



Synthesis 

Synthesis converts Verilog (or other HDL) descriptions to an implementation using technology-

specific primitives 

 

•Verilog and VHDL started out as simulation languages, but soon programs were written to automatically 

convert Verilog code in to low-level circuit descriptions (netlists). 

 For FPGAs: LUTs, flip-flops, and RAM blocks– 

 For ASICs: standard cell gate and flip-flop libraries, and memory blocks 

Synthesis tool used to   

 detect and eliminate redundant logic  

 detect combinational feedback loops  

 exploit don't-care conditions • detect unused states  

 detect and collapse equivalent states , make state assignments  

 synthesize optimal, multilevel realizations of logic subject to constraints on area and/or speed 

physical technology. 

Need of Logic Synthesis 

1.Automatically manages many details of the design process: 

•Fewer bugs 

•Improves productivity 

2.Abstracts the design data (HDL description) from any particular implementation technology 

•Designs can be re-synthesized targeting different chip technologies; E.g.: first implement in 

FPGA then later in ASIC3. 

3.In some cases, leads to a more optimal design than could be achieved by manual means (e.g.: logic 

optimization) 

4.If synthesis is not available may lead to less than optimal designs in some cases. 

 

 

 

 

 

 

 



Example : 

 

Supported Verilog Constructs: 

 Net types: wire, tri, supply1, supply0; 

 register types: reg, integer, time (64bit reg); arrays of reg 

 Continuous assignments 

 Gate primitive and module instantiations 

 always blocks, user tasks, user functions–inputs, outputs, and in outs to a module 

 All operators (+, -, *, /, %, <, >, <=, >=,==, !=, ===, !==, &&, ||, !, ~, &, ~&, |, ~|,^~, ~^, ^, <<, 

>>, ?:, { }, {{ }}) 

 Procedural statements: if-else-if,case, casex, casez, for, repeat, while, forever, begin, end, fork, 

join 

 Procedural assignments: blocking assignments =, non blocking assignments <= (Note: <= cannot 

be mixed with = for the same register). 

 Compiler directives: `define,`ifdef, `else, `endif, `include,`undef: 

 Integer ranges and parameter ranges 

 Local declarations to begin-end block 

 Variable indexing of bit vectors on the left and right sides of assign 

 

 

 



Un Supported Verilog Constructs: 

 

Synthesis - Combinational Logic 

Combination logic function can be expressed as:    

                logic_output(t) = f(logic_inputs(t)) 

 

 Avoid technology dependent modeling; i.e. implement functionality, not timing. 

 The combinational logic must not have feedback. 

 Specify the output of a combinational behavior for all possible cases of its inputs. 

 Logic that is not combinational will be synthesized as sequential 

Combination logic can be generated using 

 Netlist of primitives:  AND, OR, etc. 

 User-defined primitive 

 Continuous assignments 

 Level-sensitive cyclic behavior 

 Procedural continuous assignment (assign ... deassign ) 

Net list of structured primitives 

 Synthesis tools further optimize a gate netlist specified in terms of Verilog primitives 

 



module or_nand_1 (enable, x1, x2, x3, x4, y); 

  input enable, x1, x2, x3, x4;  

  output y;  

  wire w1, w2, w3;  

  or (w1, x1, x2); 

  or (w2, x3, x4);  

  or (w3, x3, x4); // redundant  

  nand (y, w1, w2, w3, enable); 

endmodule  

 

Synthesis: Continuous Assignment 

Continuous assignment statements are synthesizable and they will produce  

(1) combinational logic, (2) latch, (3) three-state output 

 

module or_nand (y, enable, x1, x2, x3, x4);  

output y; 

 input enable, x1, x2, x3, x4;  

assign y = ~(enable & (x1 | x2) & (x3 | x4));  

endmodule 

 

Synthesis: Level-Sensitive Cyclic Behavior 

A level-sensitive cyclic behavior will synthesize to combinational logic if it assigns a 

value to each output for every possible value of its inputs.  

• The event control expression of the behavior must be sensitive to every input  

• Every path of the activity flow must assign value to every output. 

The data words are identical if all of their bits match in each position Otherwise, the most 

significant bit at which the words differ determines their relative magnitude 



 

Synthesis of Combinational Logic – Functions 

Example: 

module or_nand_4 (enable, x1, x2, x3, x4, y); 

   input enable, x1, x2, x3, x4; 

   output y; 

   assign y = or_nand(enable, x1, x2, x3, x4); 

   function or_nand; 

      input enable, x1, x2, x3, x4;  

      begin 

         or_nand = ~(enable & (x1 | x2) & (x3 | x4)); 

      end 

   endfunction  

endmodule  

Synthesis of Combinational Logic  Tasks : 

Example:  

module or_nand_5 (enable, x1, x2, x3, x4, y); 

   input enable, x1, x2, x3, x4; 



   output y; 

   reg y; 

   always @ (enable or x1 or x2 or x3 or x4)  

     or_nand (enable, x1, x2, x3c, x4); 

   task or_nand; 

     input enable, x1, x2, x3, x4; 

     output y; 

     begin  

       y = !(enable & (x1 | x2) & (x3 | x4)); 

     end 

   endtask  

endmodule  

Synthesis of Multiplexors 

 

Unwanted Latches 

 Unintentional latches generally result from incomplete case statement or conditional 

branch 

Example: case statement 

always @ (sel_a or sel_b or data_a or data_b) 

 case ({sel_a, sel_b})                                                                 

     2'b10: y_out = data_a; 

     2'b01: y_out = data_b; 

   endcase  

 

The latch is enabled by the "event or" of the cases under which assignment is explicitly made. 

e.g. ({sel_a, sel_b} == 2'b10) or ({sel_a, sel_b} == 2'b01) 



 Example: if .. else statement 

always @ (sel_a or sel_b or data_a or data_b) 

   if ({sel_a, sel_b} == 2’b10) 

       y_out = data_a; 

   else if ({sel_a, sel_b} == 2’b01)                 

       y_out = data_b;  

 

Synthesis of Priority Structures: 

 A case statement implicitly attaches higher priority to the first item that it decodes than to 
the last one  

 If the case items are mutually exclusive the synthesis tool will treat them as though they 
had equal priority and will synthesize a mux rather than a priority structure. 

 Even when the list of case items is not mutually exclusive a synthesis tool might allow 
the user to direct that they be treated without priority (e.g., Synopsys parallel_case 
directive). This would be useful if only one case item could be selected at a time in 
actual operation.  

 An if statement implies higher priority to the first branch than to the remaining branches.  

 If branching is mutually exclusive, synthesis produces a mux structure  

 Otherwise create a priority structure 

When the branching of a conditional (if) is not mutually exclusive, or when the branches of a 

case statement are not mutually exclusive, the synthesis tool will create a priority structure. 

module mux_4pri (y, a, b, c, d, sel_a, sel_b, sel_c); 

   input a, b, c, d, sel_a, sel_b, sel_c; 

   output y; 

   reg y; 

   always @ (sel_a or sel_b or sel_c or a or b or c or d) 

   begin 

     if (sel_a == 1) y = a; else 

     if (sel_b == 0) y = b; else 

     if (sel_c == 1) y = c; else 

        y = d; 

  end 

endmodule  

 



Exploiting Don't-Care Conditions 

 An assignment to x in a case or an if statement will be treated as a don't care condition in 

synthesis 

 If a conditional operator assigns the value z to the right-hand side expression of a 

continuous assignment in a level-sensitive behavior, the statementwill synthesize to a 

three-state device driven by combinational logic 

 

 
 

 



UDP :USER DEFINED PRIMITIVES  

 
 

SYNTHSIS OF COMBINATIONAL AND SEQUENTIAL LOGIC USING 

VERILOG: Synthesis of combinational logic: Net list of structured 

primitives, a set of continuous assignment statements and level 

sensitive cyclic behavior with examples, Synthesis of priority 

structures, Exploiting logic don’t care conditions. Synthesis of 

sequential logic with latches: Accidental synthesis of latches and 

Intentional synthesis of latches, Synthesis of sequential logic 

with flip-flops, Synthesis of explicit state machines. 

Sequential components: their output values are computed using both the present and past 

input values.In other words, their outputs depend on the sequence of input values that 

have occurred over a period of time.This dependence on the past input values requires the 

presence of memory elements.The values stored in memory elements define the state of a 

sequential component.Since memory is finite, therefore, the sequence size must always be 

finite, which means that the sequential logiccan contain only a finite number of states.So 

sequential circuits are sometimes called finite-state machines.Sequential circuits can be a 



asynchronous or synchronous. Asynchronous sequential circuits change their state and 

output values whenever a change in input values occurs. Synchronous sequential circuits 

change their states and output values at fixed points of time, which are specified by the 

rising or falling edge of a free-running clock signal 

 A feedback-free netlist of combinational primitives will synthesize into latch-free 

combinational logic. 

 A continuous assignment with feedback in a conditional operator will synthesize into a 

latch. 

 A set of feedback-free continuous assignments will synthesize into latch-free 

combinational logic. 

 
 

 

 

 

 

 

 

 

 

 

 

 



FINITE STATE MACHINE : 

 

 
 

Accidental Synthesis of Latches 

A Verilog description of combinational logic must assign value to the outputs for all 

possible values of the inputs otherwise latches may occur. 

 



 

 
 

 

 

 



EXAPMLE 2: 

 

 
 

Intentional Synthesis of Latches 

An if statement in a level-sensitive behavior will synthesize to a latch if the statement 

assigns value to a register variable in some, but not all, branches, i.e., the statement is 

incomplete. 

 



 
 

 



 

UNIT-VI 

VERILOG MODELS: Static RAM Memory, A simplified 486 Bus Model, Interfacing Memory to a 

Microprocessor Bus, UART Design and Design of Microcontroller CPU. 

Static RAM Memory 

 

            Fig . 1 Block Diagram of Static RAM 

RAM stands for random access memory, which means that any word memory can be accessed 

in the same amount of the time as any other word. Figure 1 shows the block diagram of a static RAM 

with n address lines, M data lines, and three control lines. This memory can store a total of 2n words, 

each m bits wide. The data lines are bi-directional in order to reduce the required number of pins and 

the package size of the memory chip. When reading from the RAM, the data lines are output; when 

writing to the RAM, the data lines serve as inputs. The three control lines function as follows: When 

asserted low, chip select selects the memory chip so that memory read and write operations are 

possible. 

When asserted low, output enable enables the memory output onto an external bus. When 

asserted low, write enable allows data to be written to the RAM. (We say that a signal is asserted when 

it is in its active state. An active-low signal is asserted when it is low, and an active-high signal is asserted 

when it is high.) 

The RAM contains address decoders and a memory array. The address inputs to the RAM are 

decoded to select cells within the RAM. Figure 2 shows the functional equivalent of a static RAM cell 

that stores one bit of data. The cell contains a transparent D latch, which stores the data. When is 

asserted low and is high, G = 0, the cell is in the read mode, and Data Out = Q. When is asserted low and 

is high, G = 1 and data can enter the transparent latch. When either and goes high, the data is stored in 

the latch. When is high, Data Out is high-Z. 

6116 static CMOS RAM  

6116 static CMOS RAM can store 2K bytes of data. Figure 3 shows the block diagram of a 6116 

static RAM, which can store 2048 8-bit words of data. This memory has 16,384 cells, arranged in a 128 x 

128 memory matrix. The 11 address lines, which are needed to address the 2 11 bytes of data, are 

divided into two groups. Lines A10 through A4 select one of the 128 rows in the matrix. Lines A3 through 

A0 select 8 columns in the matrix at a time, since there are 8 data lines. The data outputs from the 

matrix go through tristate buffers before connecting to the data I/O lines. These buffers are disabled 

except when reading from the memory. 



 

The truth table for the RAM (given above) describes its basic operation. High-Z in the I/O column 

means that the output buffers have high-Z outputs, and the data inputs are not used. In the read mode, 

the address lines are decoded to select eight of the memory cells, and the data comes out on the I/O 

lines after the memory access time has elapsed. In the write mode, Input data is routed to the latch 

inputs in the selected memory cells when WE is low, but writing to the latches in the memory cells is not 

completed until either WE goes high or the chip is deselected. The truth table does not take memory 

timing into account. 

Synchronous Static RAM 

Memory is a basic element in any system whether the memory is volatile or non-volatile. In this 

example, a volatile memory unit is designed in the form of a Synchronous Static RAM. Static Random-

Access Memory (SRAM) is a type of semiconductor memory that uses bi-stable latching circuitry to store 

each bit. The term Static differentiates it from Dynamic RAM (DRAM) which must be periodically 

refreshed. SRAM retains data, but it is still volatile as data is lost when the power to the memory unit is 

cut off. 

Verilog Module 

Figure 1 presents the Verilog module of the Synchronous SRAM. This Synchronous SRAM can 

store eight 8-bit values. The Synchronous SRAM module consists of a 8-bit data input line, dataIn and a 

8-bit data output line, dataOut. The module uses an 8-bit address line, Addr to locate the position of 

data-byte within the memory array. With an 8-bit address line a 256-unit deep SRAM can be addressed, 

but in this example, an 8-unit deep SRAM is designed for simplicity. The module is clocked using the 1-

bit input clock line Clk. The module also has a 1-bit chip select line, CS. 



 

The 1-bit RD line is used to signal a data read operation on the Synchronous SRAM and the 1-bit 

WE line is used to signal a data write operation on the Synchronous SRAM. Both the RD and WE lines are 

active high. 

 

module syncRAM( dataIn, dataOut, Addr, CS, WE, RD, Clk );  

// parameters for the width  

parameter ADR   = 8; 

parameter DAT   = 8; 

parameter DPTH  = 8; 

//ports 

input   [DAT-1:0]  dataIn; 

output reg [DAT-1:0]  dataOut; 

input   [ADR-1:0]  Addr; 

input CS, WE, RD, Clk; 

//internal variables 

reg [DAT-1:0] SRAM [DPTH-1:0]; 

always @ (posedge Clk) 
begin 
 if (CS == 1'b1) 

 begin 
  if (WE == 1'b1 && RD == 1'b0) 
 begin 

             SRAM [Addr] = dataIn; 
  end 

     else if (RD == 1'b1 && WE == 1'b0) 
 begin 

                 dataOut = SRAM [Addr];  
                                                             end 

  else; 
                              end 

 else; 
             end 
endmodule 

Figure 2. Verilog Code for Synchronous SRAM 

 



Verilog Test Bench for Synchronous SRAM (syncRAM_tb.v) 

`timescale 1ns / 1ps 

module syncRAM_tb; 

 // Inputs 

 reg [7:0] dataIn; 

 reg [7:0] Addr; 

 reg CS,WE,RD,Clk; 

 // Outputs 

 wire [7:0] dataOut; 

 // Instantiate the Unit Under Test (UUT) 

 syncRAM uut ( .dataIn(dataIn), .dataOut(dataOut),.Addr(Addr), .CS(CS), .WE(WE), .RD(RD), .Clk(Clk) ); 

 initial 

 begin 

  // Initialize Inputs 

  dataIn  = 8'h0;  Addr  = 8'h0;  CS  = 1'b0;  WE  = 1'b0;  RD  = 1'b0;  Clk  = 1'b0; 

  // Wait 100 ns for global reset to finish 

  #100; 

  // Add stimulus here 

  dataIn  = 8'h0; Addr  = 8'h0;  CS  = 1'b1;  WE  = 1'b1; RD  = 1'b0; 

  #20;  dataIn  = 8'h0; Addr  = 8'h0; 

   #20;  dataIn  = 8'h1;  Addr  = 8'h1; 

  #20;  dataIn  = 8'h10;  Addr  = 8'h2; 

  #20;  dataIn  = 8'h6;  Addr  = 8'h3; 

     #20;  dataIn  = 8'h12;  Addr  = 8'h4; 

  #40;  Addr  = 8'h0;  WE  = 1'b0;  RD  = 1'b1; 

  #20;  Addr   = 8'h1; 

  #20;  Addr   = 8'h2; 

  #20;  Addr   = 8'h3; 

  #20;  Addr   = 8'h4; 

 end 

 always #10 Clk = ~Clk; 

endmodule 



 

 

Figure 4. Timing diagram of Synchronous SRAM with four data 

Microprocessor Bus Interface: 

 



 

 

 



 

SIMPLIFIED 486 BUS INTERFACE: 

The internal bus interface in Figure 17 shows only those signals needed for transferring data 

between the bus interface unit and the CPU. If the CPU needs to write data to a memory attached to the 

external bus interface, it requests a write cycle by setting br (bus request) to 1 and wr = 0. When the write 

or read cycle is complete, the bus interface unit returns done = 1 to the CPU. 

\  



     

 

 

 

 



 

UART DESIGN 

Universal Asynchronous Receiver Transmitter is an integrated circuit, which is used for transmitting 

and receiving data asynchronously via the serial port on the computer. It contains a parallel-to-serial 

converter for data transmitted from the computer and a serial-to parallel converter for data coming in via 

the serial line. The UART also has a buffer for temporarily storing data from high-speed transmissions. In 

addition to the basic job of converting data from parallel to serial for transmission and from serial to 

parallel on reception. The UART serial module is divided into three sub-modules:  

 The baud rate generator, 

 receiver module and  

 transmitter module.  

The baud rate generator is used to produce a local clock signal. In data transmission through the 

UART, once the baud-rate has been established, both the transmitter and the receiver’s internal clock are 

set to the same frequency.  

The UART transmit module converts the data bytes into serial bits according to the frame format and 

transmits those bits through TXD. 

 UART frame format consist of a start bit, data bit, parity bit and stop bit. After the StartBit the data bits 

are sent, with the Least Significant Bit (LSB) sent first. The start bit is always low and the stop bit is 

always high. When the complete data word has been sent, it adds a parity bit this parity bit may be used 

by the receiver to perform error checking. Then at least one Stop Bit is sent by the transmitter. Because 

asynchronous data are “selfsynchronizing”, if there is no data to transmit, the transmission line will be 

idle 

 

 



UART transmitter 

The UART transmitter is always part of larger environment in which a host processor controls 

transmission by fetching a data word in parallel format and directing the UART to transmit it in a serial 

format . likewise, receiver must detect transmission, receive the data in serial format, and strip off start-

and stop-bits, and store the data word in a parallel format. The receiver‘s job is more complex because the 

clock used to send the inbound data . 

The input –output signals of the transmitter are shown in the high-level block diagram in figure 3 

the input signals are provider by the host processor, and the output signals control the movement of data 

in the UART .  

The architecture of the transmitter will consist of a controller, a data register (XMT-datareg) , a 

data shift register (XMT-shiftreg ) , and a status register (bit-count) to count the bits that are transmitted. 

The status register will be included with in the data path unit. 

 

The ASM chart state machine controlling the transmitter is shown figure 4. The machine as three states : 

idle, waiting, and sending.  

When reset-is asserted, the machine a synchronously enters idle, bit-count is cleared 

,XMTshftreg is loaded with 1 s ,and the control signal clear, load-XMT- shftreg , shift ,and start are driven 

to 0. In idle, if an active edge of clock occurs while load-XMT-data-ref=g is asserted by external host the 

contents of data-bus while to transfer to XMT-data-reg (this action is not part of ASM chart because it 

occurs independently of the state of the machine) the machine remains in idle until start is asserted 

 



 

When Byte- ready is asserted, Load-XMT-shftreg is asserted and next –state is driven to waiting. 

The assertion of load-XMT-shftreg indicates that XMT-datareg now contains data that can be transferred 

to the internal shift register.  

 At the next active edge of clock, with load-XMT-shftreg asserted, three activities occur:  

(1) State transfer from idle to waiting, 

(2)The contents of XMT-datareg are loaded in to the left mode bits of XMT-shftreg a (word-

size+1)-bit shift reg whose LSB signal the start and stop of transmission, and The LSB of XMT- shftreg is 

reloaded with 1, the stop-bit. The machine remains in waiting until the external processor asserted T-

byte. 

As the next active edge of clock, with T-byte asserted state enters sending and LSB of XMT-

shftreg is set to 0 to signal the start of transmission at the same time shift is driven to 1, and next-state 

retains the state code corresponding to sending. At sub sequences active edges of clock, with shift 

asserted state remains in sending and the contents of XMT-shftreg are shifted towards the LSB the 

machine increments bit-count after each movement of data, and when bit-count reaches 9 clear asserts, 

indicating that all of bits of augmented word have been shifted to serial output. At the next active edge 

of the clock, the machine returns to idle. 

 

 



UART receiver 

The UART receiver has the task of receiving the serial bit stream of data, removing the start-bit, 

and transferring the data in a parallel format to a storage register connected to the host data bus.  

The cycles of Sample _ clock will be counted to ensure that the data are sampled in the middle 

of a bit time, as shown in the figure 6 the sampling algorithm must  

(1)Verify that a start bit has been received,  

(2) Generate samples from 8 bits of the data and  

(3)Load the data on to the local bus.  

Three additional samples will be taken to confirm that a valid start –bit has arrived. Thereafter, 8 

successive bits will be sampled at approximately the centre of their bit times. Under worst-case 

conditions of misalignment, the sample is taken a fully cycle of Sample_clock ahead of actual centre of 

the bit time, which is a tolerable skew. 

 



The ASM chart of a state machine controller for the receiver is shown in figure 7 . 

The machine has three states: idle, starting, and receiving. 

 Transitions between states are synchronized by Sample _ clk .  

 Assertion of an asynchronous active –low reset puts the machine in the idle state.  

 It remains there until Serial _ in is low, and then makes a transition to starting. 

 In starting, the machine samples Serial _ in to determine whether the first bit is a valid 

start – bit (it must be 0).  

 Depending on the sampled values , inc _ Sample _ counter and clr _ Sample _ counter 

may be asserted to increment or clear the counter at the next active edge of Sample _ 

clock. If the next three samples of Serial _ in are 0, the machine concludes that the start 

– bit is valid and goes to the state receiving.  

 Sample _ counter is cleared on the transition to receiving. In this state, eight successive 

samples are taken (one for each bit of the byte, at each active edge of Sample _ 

clk),with inc _Sample _ counter asserted. Then Bit _ counter is incremented. 

  If the sampled bit is not the last (parity) bit , inc _ Bit _ counter and shift are asserted. 

The assertion of shift will cause the sample value to be loaded into the MSB of RCV _ 

shftreg, the receiver shift register, and will shift the 7 leftmost bits of the register 

towards the LSB. After the last bit has been sampled, the machine will assert read _ not 

_ ready _ out, a handshake output signal to the processor, and clear the bit counter.  

 If read _ not _ ready _in is asserted, the host processor is not ready to receive the data 

(Error1). If a stop –bit is not the next bit (detected by Serial _ in =0), there is an error in 

the format of the received data (Error2). Otherwise, load is asserted to cause the 

contents of the shift register to be transferred as a parallel word to RCV _ datareg, a 

data register in the host machine, with a direct connection to data _ bus.  



 

APPLICATIONS:UARTs are used for devices including GPS units  

 Modems 

  wireless communication  

 Bluetooth modules, amongst many other applications  

 low-cost home computers or embedded systems dispense with a UART 

 

 

 

 

 

 

 



Design of microcontroller to CPU: 

Instruction Set Architecture:  

Each instruction is 12 bits. There are 3 types of instructions by encoding, shown as following: 

 M type: one operand is accumulator (sometimes ignored) and the other operand is from data 

memory; the result can be stored into accumulator or the data memory entry (same entry as the 

second operand). 

 I type: one operand is accumulator and the other operand is immediate number encoded in 

instruction; the result is stored into accumulator. 

 S type: special instruction, no operand required. (e.g. NOP) 

These instructions can be grouped into 4 categories by function. 

1. ALU instruction: using ALU to compute result; 

2. Unconditional branch: the GOTO instruction; 

3. Conditional branch: the JZ, JC, JS, JO instruction; 

4. Special instruction: the NOP. 

 

The above table contains the detailed information of each M type instruction. Note that “aaaa” 

encodes the 4 bit address of data memory, and the “d” bit means destination of the result, i.e. if d = 1, 

result is written to Acc, otherwise the result is written to the same memory location as the operand 

Note that all M type instructions are ALU instructions. 

I type instructions 

Note that I type instructions contains unconditional branch, conditional branch, and ALU instructions. 

S type instructions 

There is only one S type instruction, i.e. the NOP instruction.     

 

 



 Architecture of Microcontroller unit: 

The following two type of components holds programming context. 

 Program counter, program memory, data memory, accumulator, status register (green boxes). 

They are programmer visible registers and memories. 

 Instruction register and data register (purple boxes). They are programmer invisible registers. 

The following two type of components is Boolean logics that do the actual computation work. They are 

stateless 

ALU, MUX1, MUX2, Adder (blue boxes), used as a functional unit. 

 Control Logic (yellow box), used to denote all control signals (red signal) 



 

Each instruction needs 3 clock cycles to finish, i.e. FETCH stage, DECODE stage, and EXECUTE 

stage. Note that it is not pipelined. Together with the initial LOAD state, it can be considered as an FSM 

of 3 states (technically 4 states). 

States: 

1. LOAD (initial state): load program to program memory, which takes 1 cycle per instruction loaded; 

2. FETCH (first cycle): fetch current instruction from program memory; 

3. DECODE (second cycle): decode instruction to generate control logic, read data memory for operand; 

4. EXECUTE (of the third cycle): execute instruction 

Registers 

The microcontroller has 3 programmer visible register: 

1. Program Counter (8 bit, denoted as PC): contains the index of current executing instruction. 

2. Accumulator (8 bit, denoted as Acc): holds result and 1 operand of the arithmetic or logic 

calculation. 

3. Status Register (4 bit, denoted as SR): holds 4 status bit, i.e. Z, C, S, O. 

1. Z (zero flag, SR[3]): 1 if result is zero, 0 otherwise. 

2. C (carry flag, SR[2]): 1 if carry is generated, 0 otherwise. 

3. S (sign flag, SR[1]): 1 if result is negative (as 2’s complement), 0 otherwise. 

4. O (overflow flag, SR[0]): 1 if result generates overflow, 0 otherwise. 

The microcontroller has 2 programmer invisible registers (i.e. they can not be manipulated by 

programmer): 

1. Instruction Register (12 bit, denoted as IR): contains the current executing instruction. 

2. Data Register (8 bit, denoted as DR): contains the operand read from data memory. 



Similarly, each of these registers has an enable port as a flag for whether the value of the register should 

be updated in state transition. They are denoted as IR.E and DR.E. 

Program memory 

The microcontroller has a 256 entry program memory that stores program instructions, denoted as 

PMem. Each entry is 12 bits, the ith entry is denoted as PMem[i]. The program memory has the 

following input/output ports. 

 Enable port (1 bit, input, denoted as PMem.E): enable the device, i.e. if it is 1, then the entry 

specified by the address port will be read out, otherwise, nothing is read out. 

 Address port (8 bit, input, denoted as PMem.Addr): specify which instruction entry is read out, 

connected to PC. 

 Instruction port (12 bit, output, denoted as PMem.I): the instruction entry that is read out, 

connected to IR.  

 3 special ports are used to load program to the memory, not used for executing instructions. 

 Load enable port (1 bit, input, denoted as PMem.LE): enable the load, i.e. if it is 1, then the 

entry specified by the address port will be load with the value specified by the load instruction 

input port and the instruction port is supplied with the same value; otherwise, the entry 

specified by the address port will be read out on instruction port, and value on instruction load 

port is ignored. 

 Load address port (8 bit, input, denoted as PMem.LA): specify which instruction entry is loaded. 

 Load instruction port (12 bit, input, denoted as PMem.LI): the instruction that is loaded. 

For example, if the address point is supplied with 8’b0000_0011 and enable is set to 1, the fourth entry 

is read out on instruction port. 

Data memory 

The microcontroller has a 16 entry data memory, denoted as DMem. Each entry is 8 bits, the ith 

entry is denoted as DMem[i]. The program memory has the following input/output ports. 

 Enable port (1 bit, input, denoted as DMem.E): enable the device, i.e. if it is 1, then the entry 

specified by the address port will be read out or written in; otherwise nothing is read out or 

written in. 

 Write enable port(1 bit, input, denoted as DMem.WE): enable the write, i.e. if it is 1, then the 

entry specified by the address port will be written with the value specified by the data input port 

and the data output port is supplied with the same value; otherwise, the entry specified by the 

address port will be read out on data output port, and value on data input port is ignored. 

 Address port (4 bit, input, denoted as DMem.Addr): specify which data entry is read out, 

connected to IR[3:0]. 

 Data input port (8 bit, input, denoted as DMem.DI): the value that is written in, connected to 

ALU.Out. 



 Data output port (8 bit, output, denoted as DMem.DO): the data entry that is read out, 

connected to MUX2.In1. 

For example, if the address point is supplied with 8’0000_0011, data input port is supplied with 

8’0000_0000, enable is set to 1, and write enable is set to 1, the fourth entry of the data memory is 

written with value 0 and the data output port shows 8’0000_0000.  

PC adder 

PC adder is used to add PC by 1, i.e. move to the next instruction. This component is pure 

combinational. It has the following port. 

 Adder input port (8 bit, input, denoted as Adder.In): connected to PC. 

 Adder output port (8 bit, output, denoted as Adder.Out): connected to MUX1.In2.  

MUX1 

MUX1 is used to choose the source for updating PC. If the current instruction is not a branch or it is 

a branch but the branch is not taken, PC is incremented by 1; otherwise PC is set to the jumping target, 

i.e. IR [7:0]. It has the following port.  

 MUX1 input 1 port (8 bit, input, denoted as MUX1.In1): connected to IR [7:0]. 

 MUX1 input 2 port (8 bit, input, denoted as MUX1.In2): connected to Adder.Out. 

 MUX1 selection port (1 bit, input, denoted as MUX1.Sel): connected to control logic. 

 MUX1 output port (8 bit, output, denoted as MUX1.Out): connected to PC. 

ALU 

ALU is used to do the actual computation for the current instruction. This component is pure 

combinational. It has the following port. The mode of ALU is listed in the following table. 

 ALU operand 1 port (8 bit, input, denoted as ALU.Operand1): connected to Acc. 

 ALU operand 2 port (8 bit, input, denoted as ALU.Operand2): connected to MUX2.Out. 

 ALU enable port (1 bit, input, denoted as ALU.E): connected to control logic. 

 ALU mode port (4 bit, input, denoted as ALU.Mode): connected to control logic. 

 Current flags port (4 bit, input, denoted as ALU.CFlags): connected to SR. 

 ALU output port (8 bit, output, denoted as ALU.Out): connected to DMem.DI. 

 ALU flags port (4 bit, output, denoted as ALU.Flags): the Z (zero), C (carry), S (sign), O (overflow) 

bits, from MSB to LSB, connected to status register. 

MUX2 

MUX2 is used to choose the source for operand 2 of ALU. If the current instruction is M type, operand 2 

of ALU comes from data memory; if the current instruction is I type, operand 2 of ALU comes from the 

instruction, i.e. IR [7:0]. It has the following port.  

 MUX2 input 1 port (8 bit, input, denoted as MUX2.In1): connected to IR [7:0]. 



 MUX2 input 2 port (8 bit, input, denoted as MUX2.In2): connected to DR. 

 MUX2 selection port (1 bit, input, denoted as MUX2.Sel): connected to control logic. 

 MUX2 output port (8 bit, output, denoted as MUX2.Out): connected to ALU.Operand2. 

Control unit design 

Control signal is derived from the current state and current instruction. The control logic component is 

purely combinational. There are in total 12 control signals, listed as follows. 

 PC.E: enable port of program counter (PC); 

 Acc.E: enable port of accumulator (Acc); 

 SR.E: enable port of status register (SR); 

 IR.E: enable port of instruction register (IR); 

 DR.E: enable port of data register (DR); 

 PMem.E: enable port of program memory (PMem); 

 DMem.E: enable port of data memory (DMem); 

 DMem.WE: write enable port of data memory (DMem); 

 ALU.E: enable port of ALU; 

 ALU.Mode: mode selection port of ALU; 

 MUX1.Sel: selection port of MUX1; 

 MUX2.Sel: selection port of MUX2; 

 

VERILOG CODE FOR ALU: 

module ALU(  input [7:0] Operand1,Operand2, 

  input E,  

  input [3:0] Mode, 

  input [3:0] CFlags, 

  output  [7:0] Out, 

  output  [3:0] Flags  

// the Z (zero), C (carry), S (sign),O (overflow) bits, 

from MSB to LSB, connected to status register  

   ); 

  wire Z,S,O; 

  reg CarryOut; 

  reg [7:0] Out_ALU; 

  always @(*) 

  begin 



  case(Mode)  

  4'b0000: {CarryOut,Out_ALU} = Operand1 + Operand2; 

  4'b0001: begin Out_ALU = Operand1 -  Operand2; 

  CarryOut = !Out_ALU[7]; 

  end 

  4'b0010: Out_ALU = Operand1; 

  4'b0011: Out_ALU = Operand2; 

  4'b0100: Out_ALU = Operand1 & Operand2; 

  4'b0101: Out_ALU = Operand1 | Operand2; 

  4'b0110: Out_ALU = Operand1 ^ Operand2; 

  4'b0111: begin 

  Out_ALU = Operand2 - Operand1; 

  CarryOut = !Out_ALU[7]; 

  end 

  4'b1000: {CarryOut,Out_ALU} = Operand2 + 8'h1; 

  4'b1001: begin 

  Out_ALU = Operand2 - 8'h1; 

  CarryOut = !Out_ALU[7]; 

  end  

  4'b1010: Out_ALU = (Operand2 << Operand1[2:0])| ( 

Operand2 >> Operand1[2:0]); 

  4'b1011: Out_ALU = (Operand2 >> Operand1[2:0])| ( 

Operand2 << Operand1[2:0]); 

  4'b1100: Out_ALU = Operand2 << Operand1[2:0]; 

  4'b1101: Out_ALU = Operand2 >> Operand1[2:0]; 

  4'b1110: Out_ALU = Operand2 >>> Operand1[2:0]; 

  4'b1111: begin 

 Out_ALU = 8'h0 - Operand2; 

 CarryOut = !Out_ALU[7]; 

 end 

 default: Out_ALU = Operand2; 

 endcase 

 end 

 assign O = Out_ALU[7] ^ Out_ALU[6]; 

 assign Z = (Out_ALU == 0)? 1'b1 : 1'b0; 

 assign S = Out_ALU[7]; 

 assign Flags = {Z,CarryOut,S,O}; 



 assign Out = Out_ALU; 

endmodule 


