Unit-1
Verilog as HDL

Verilog has a variety of constructs as part of it. All are aimed at providing a functionally tested
and a verified design description for the target FPGA or ASIC.

The language has a dual function — one fulfilling the need for a design description and the other
fulfilling the need for verifying the design for functionality and timing constraints like
propagation delay, critical path delay, slack, setup, and hold times.

Levels of Design Description

The components of the target design can be described at different levels with the help of the
constructs in Verilog.

In Verilog HDL a module can be defined using various levels of abstraction. There are four levels
of abstraction in verilog.

They are: 1. Circuit Level 2. Gate Level 3. Data Flow Level 4. Behavioral Level

Circuit Level

At the circuit level, a switch is the basic element with which digital circuits are built. Switches
can be combined to form inverters and other gates at the next higher level of abstraction.
Verilog has the basic MOS switches built into its constructs, which can be used to build basic
circuits like inverters, basic logic gates, simple 1-bit dynamic and static memories. They can be
used to build up larger designs to simulate at the circuit level, to design performance critical
circuits.

The below Figurel shows the circuit of an inverter suitable for description with the switch level
constructs of Verilog.

vdd

—d|
—|

Vss

Figure 1 CMOS inverter

Gate Level

At the next higher level of abstraction, design is carried out in terms of basic gates. All the basic
gates are available as ready modules called “Primitives.” Each such primitive is defined in terms
of its inputs and outputs. Primitives can be incorporated into design descriptions directly. Just
as full physical hardware can be built using gates, the primitives can be used repeatedly and
judiciously to build larger systems.

Figure 2 shows an AND gate suitable for description using the gate primitive of Verilog.

A_
B_

Figure 2 AND gate symbol

out

The gate level modeling or structural modeling as it is sometimes called is akin to building a
digital circuit on a bread board, or on a PCB. One should know the structure of the design to
build the model here. One can also build hierarchical circuits at this level. However, beyond 20
to 30 of such gate primitives in a circuit, the design description becomes unwieldy; testing and
debugging become laborious.

Data Flow

Data flow is the next higher level of abstraction. All possible operations on signals and variables
are represented here in terms of assignments. All logic and algebraic operations are
accommodated. The assignments define the continuous functioning of the concerned block. At
the data flow level, signals are assighed through the data manipulating equations. All such
assignments are concurrent in nature. The design descriptions are more compact than those at
the gate level.

Figure 3 shows an A-O-l relationship suitable for description with the Verilog constructs at the
data flow level.

e=ab+cd

Ficure 3 An A-O-I gate represented as a
data flow type of relationship.

Behavioral Level

Behavioral level constitutes the highest level of design description; it is essentially at the system
level itself. With the assignment possibilities, looping constructs and conditional branching
possible, the design description essentially looks like a “C” program.

A module can be implemented in terms of the design algorithm. The designer no need to have
any knowledge of hardware implementation.

The statements involved are “dense” in function. Compactness and the comprehensive nature
of the design description make the development process fast and efficient.

Figure 4 shows an A-O-1 gate expressed in pseudo code suitable for description with the
behavioral level constructs of Verilog.

If (a, b, ¢ or d changes)
Compute e as

e=ab+cd

Ficure . 4 An A-O-I gate in pseudo code at
behavioral level.

The Overall Design Structure in Verilog

The possibilities of design description statements and assignments at different levels
necessitate their accommodation in a mixed mode. In fact the design statements coexisting in a
seamless manner within a design module is a significant characteristic of Verilog. Thus Verilog
facilitates the mixing of the above-mentioned levels of design. A design built at data flow level
can be instantiated to form a structural mode design. Data flow assignments can be
incorporated in designs which are basically at behavioral level.

Concurrency

In an electronic circuit all the units are to be active and functioning concurrently. The voltages
and currents in the different elements in the circuit can change simultaneously. In turn the logic
levels too can change. Simulation of such a circuit in an HDL calls for concurrency of operation.

A number of activities — may be spread over different modules — are to be run concurrently
here. Verilog simulators are built to simulate concurrency. (This is in contrast to programs in the
normal languages like C where execution is sequential.)

Concurrency is achieved by proceeding with simulation in equal time steps. The time step is
kept small enough to be negligible compared with the propagation delay values. All the
activities scheduled at one time step are completed and then the simulator advances to the
next time step and so on. The time step values refer to simulation time and not real time. One
can redefine timescales to suit technology as and when necessary and carry out test runs.

In some cases the circuit itself may demand sequential operation as with data transfer and
memory-based operations. Only in such cases sequential operation is ensured by the
appropriate usage of sequential constructs from Verilog HDL.

Simulation and Synthesis

The design that is specified and entered as described earlier is simulated for functionality and
fully debugged. Translation of the debugged design into the corresponding hardware circuit
(using an FPGA or an ASIC) is called “synthesis.”

The tools available for synthesis relate more easily with the gate level and data flow level
modules [Smith MIJ]. The circuits realized from them are essentially direct translations of
functions into circuit elements.

In contrast many of the behavioral level constructs are not directly synthesizable; even if
synthesized they are likely to yield relatively redundant or wrong hardware. The way out is to
take the behavioral level modules and redo each of them at lower levels. The process is carried
out successively with each of the behavioral level modules until practically the full design is
available as a pack of modules at gate and data flow levels (more commonly called the “RTL
level”).

Programming Language Interface (PLI)

PLI provides an active interface to a compiled Verilog module. The interface adds a new
dimension to working with Verilog routines from a C platform. The key functions of the
interface are as follows:

e One can read data from a file and pass it to a Verilog module as input. Such data can be
test vectors or other input data to the module. Similarly, variables in Verilog modules
can be accessed and their values written to output devices.

e Delay values, logic values, etc., within a module can be accessed and altered.

e Blocks written in C language can be linked to Verilog modules.

MODULE

Any Verilog program begins with a keyword — called a “module.” A module is the name given to
any system considering it as a black box with input and output terminals as shown in Figure 1.
The terminals of the module are referred to as ‘ports’. The ports attached to a module can be of
three types:

module adder(a.b,..p.q. ...% ¥}

maut port

input port

h E——
output port <7________ I

> module

Figure 1 Beprasentation of 2 moeduls as black box with its ports.

e input ports through which one gets entry into the module; they signify the input signal
terminals of the module.

e output ports through which one exits the module; these signify the output
signal terminals of the module.

e inout ports: These represent ports through which one gets entry into the
module or exits the module; These are terminals through which signals are
input to the module sometimes; at some other times signals are output from
the module through these.
Whether a module has any of the above ports and how many of each type are present depend
solely on the functional nature of the module. Thus one module may not have any port at all;
another may have only input ports, while a third may have only output ports, and so on.

All the constructs in Verilog are centered on the module. They define ways of building up,
accessing, and using modules. The structure of modules and the mode of invoking them in a
design are discussed here.

A module comprises a number of “lexical tokens” arranged according to some predefined
order. The possible tokens are of seven categories:

e White spaces

e Comments

e Operators

e Numbers

e Strings

e Identifiers

e Keywords

The rules constraining the tokens and their sequencing will be dealt with as we progress. For
the present let us consider modules. In Verilog any program which forms a design description is
a “module.” Any program written to test a design description is also a “module.” The latter are
often called as “stimulus modules” or “test benches.” A module used to do simulation has the
form shown in Figure 2. Verilog takes the active statements appearing between the “module”
statement and the “endmodule” statement and interprets all of them together as forming the
body of the module. Whenever a module is invoked for testing or for incorporation into a
bigger design module, the name of the module (“test” here) is used to identify it for the
purpose.

Signifies declaration of a module
Name assigned to the module

- v v 1

l module test <
I e The semicolon ;' signifies tenmination of
4> statement I amodule statement
—]
l—l' statement2 <€—
l endmodule *—| Signifies temmination of a module

- e il

Individual statements within the module

Figure 2 Structure of 2 typical simulation moedule.

LANGUAGE CONSTRUCTS AND CONVENTIONS IN VERILOG

Introduction

The constructs and conventions make up a software language. A clear understanding and
familiarity of these is essential for the mastery of the language. Verilog has its own constructs
and conventions [IEEE, Sutherland]. In many respects they resemble those of C language
[Gottfried].

Any source file in Verilog (as with any file in any other programming language) is made up of a
number of ASCIl characters. The characters are grouped into sets — referred to as “lexical
tokens.” A lexical token in Verilog can be a single character or a group of characters. Verilog has
7 types of lexical tokens- operators, keywords, identifiers, white spaces, comments, numbers,
and strings.

Case Sensitivity

Verilog is a case-sensitive language like C. Thus sense, Sense, SENSE, sENse,... etc., are all
related as different entities / quantities in Verilog.

Keywords

The keywords define the language constructs. A keyword signifies an activity to be carried out,
initiated, or terminated. As such, a programmer cannot use a keyword for any purpose other
than that it is intended for. All keywords in Verilog are in small letters and require to be used as
such (since Verilog is a case-sensitive language). All keywords appear in the text in New Courier
Bold-type letters.

Examples

module -- signifies the beginning of a module definition.
endmodule -- signifies the end of a module definition.

begin -- signifies the beginning of a block of statements.
end -- signifies the end of a block of statements.

if -- signifies a conditional activity to be checked
while -- signifies a conditional activity to be carried out.
Identifiers

Any program requires blocks of statements, signals, etc., to be identified with an attached
nametag. Such nametags are identifiers. It is good practice for us to use identifiers, closely
related to the significance of variable, signal, block, etc., concerned. This eases understanding
and debugging of any program.

e.g., clock, enable, gate_1, ...

There are some restrictions in assigning identifier names. All characters of the alphabet or an
underscore can be used as the first character. Subsequent characters can be of alphanumeric
type, or the underscore (_), or the dollar (S) sign — for example

name, _name. Name, namel, name_S, ... - all these are allowed as identifiers

name aa -- not allowed as an identifier because of the blank (“name” and “aa” are interpreted
as two different identifiers)

Sname -- not allowed as an identifier because of the presence of “S$” as the first character.
1 _name -- not allowed as an identifier, since the numeral “1” is the first character

@name -- not allowed as an identifier because of the presence of the character “@”.
A+b m not allowed as an identifier because of the presence of the character “+”.

White Space Characters

Blanks (\b), tabs (\t), newlines (\n), and formfeed form the white space characters in Verilog. In
any design description the white space characters are included to improve readability.
Functionally, they separate legal tokens. They are introduced between keywords, keyword and
an identifier, between two identifiers, between identifiers and operator symbols, and so on.
White space characters have significance only when they appear inside strings.

Comments

Comments can be inserted in the code for readability and documentation. There are two ways
to write comments. A one-line comment starts with "//". Verilog skips from that point to the
end of line. A multiple-line comment starts with "/*" and ends with "*/". Multiple-line
comments cannot be nested. However, one-line comments can be embedded in multiple-line
comments.

a=b &&c; // This is a one-line comment

/* This is a multiple line

comment */

/* Thisis /* aniillegal */ comment */

/* This is //a legal comment */

Operators
Operators are of three types: unary, binary, and ternary. Unary operators precede the operand.

Binary operators appear between two operands. Ternary operators have two separate
operators that separate three operands.

a="~b; //~isaunary operator. b is the operand

a=b &&c; // && is a binary operator. b and c are operands

a=b?c:d;//?:isaternary operator. b, c and d are operands

Number Specification

There are two types of number specification in Verilog: sized and unsized.

Sized numbers

Sized numbers are represented as <size> '<base format> <number>.

<size> is written only in decimal and specifies the number of bits in the number. Legal base
formats are decimal ('d or 'D), hexadecimal (‘h or 'H), binary (‘b or 'B) and octal (‘o or 'O). The
number is specified as consecutive digits from 0, 1, 2, 3,4,5,6,7,8,9,4a, b, c, d, e, f. Only a
subset of these digits is legal for a particular base. Uppercase letters are legal for number
specification.

4'b1111 // This is a 4-bit binary number

12'habc // This s a 12-bit hexadecimal number

16'd255 // This s a 16-bit decimal number.

Unsized numbers

Numbers that are specified without a <base format> specification are decimal numbers by
default. Numbers that are written without a <size> specification have a default number of bits
that is simulator- and machine-specific (must be at least 32).

23456 // This is a 32-bit 'hc3 // This is a 32-bit '021 // This is a 32-bit

decimal number by default hexadecimal number octal number

X or Z values

Verilog has two symbols for unknown and high impedance values. These values are very

important for modeling real circuits. An unknown value is denoted by an x. A high impedance
value is denoted by z.

12'h13x // This is a 12-bit hex number; 4 least significant bits unknown
6'hx // This is a 6-bit hex number
32'bz // This is a 32-bit high impedance number

An x or z sets four bits for a number in the hexadecimal base, three bits for a number in the
octal base, and one bit for a number in the binary base. If the most significant bit of a number is
0, x, or z, the number is automatically extended to fill the most significant bits, respectively,
with 0, x, or z. This makes it easy to assign x or z to whole vector. If the most significant digit is
1, then it is also zero extended.

Negative numbers

Negative numbers can be specified by putting a minus sign before the size for a constant
number. Size constants are always positive. It is illegal to have a minus sign between <base
format> and <number>. An optional signed specifier can be added for signed arithmetic.

-6'd3 // 8-bit negative number stored as 2's complement of 3 -6'sd3 // Used for performing
signed integer math 4'd-2 // lllegal specification

Underscore characters and question marks

An underscore character is allowed anywhere in a number except the first character.
Underscore characters are allowed only to improve readability of numbers and are ignored by
Verilog.

A question mark "?" is the Verilog HDL alternative for z in the context of numbers.

12'b1111_0000_1010 // Use of underline characters for readability

4'b10?? // Equivalent of a 4'b10zz

Strings

A string is a sequence of characters that are enclosed by double quotes. The restriction on a
string is that it must be contained on a single line, that is, without a carriage return. It cannot be
on multiple lines. Strings are treated as a sequence of one-byte ASCII values.

"Hello Verilog World" // is a string

"a/b" //isastring

Value Set or Logic Values

Verilog supports four values and eight strengths to model the functionality of real hardware.
The four value levels are listed in Table below.

Value Level Condition in Hardware Circuits
0 Logic zero, false condition
1 Logic one, true condition
X Unknown logic value
Z High impedance, floating state
Strengths

The logic levels are also associated with strengths. In many digital circuits, multiple assignments
are often combined to reduce silicon area or to reduce pin-outs. To facilitate this, one can
assign strengths to logic levels. Verilog has eight strength levels — four of these are of the
driving type, three are of capacitive type and one of the hi-Z type.

In addition to logic values, strength levels are often used to resolve conflicts between drivers of
different strengths in digital circuits. Value levels 0 and 1 can have the strength levels listed in
Table below

Strength Level Type Degree
supply Driving strongest
strong Driving

pull riving

large Storage 0
weak Driving

medium Storage

small Storage

highz High Impedance weakest

If two signals of unequal strengths are driven on a wire, the stronger signal prevails.

For example, if two signals of strength strongl and weak0O contend, the result is resolved as a
strongl. If two signals of equal strengths are driven on a wire, the result is unknown. If two
signals of strength strongl and strongO conflict, the result is an x. Strength levels are
particularly useful for accurate modeling of signal contention, MOS devices, dynamic MOS, and
other low-level devices.

Data Types

The data handled in Verilog fall into two categories:
(i) Net data type
(ii) Variable data type

The two types differ in the way they are used as well as with regard to their respective
hardware structures. Data type of each variable or signal has to be declared prior to its use. The
same is valid within the concerned block or module.

Nets

A net signifies a connection from one circuit unit to another. Such a net carries the value of the
signal it is connected to and transmits to the circuit blocks connected to it. If the driving end of
a net is left floating, the net goes to the high impedance state. A net can be specified in
different ways.

wire: It represents a simple wire doing an interconnection. Only one output is connected to a
wire and is driven by that.

tri: It represents a simple signal line as a wire. Unlike the wire, a tri can be driven by more
than one signal outputs.

Nets are one-bit values by default unless they are declared explicitly as vectors. The terms wire
and net are often used interchangeably.

Variable Data Type

A variable is an abstraction for a storage device. It can be declared through the keyword reg
and stores the value of a logic level: 0, 1, x, or z. A net or wire connected to a reg takes on the
value stored in the reg and can be used as input to other circuit elements. But the output of a
circuit cannot be connected to a reg. The value stored in a reg is changed through a fresh
assignment in the program.

time, integer, real, and realtime are the other variable types of data; these are dealt with later.

Time

Verilog simulation is done with respect to simulation time. A special time register data type is
used in Verilog to store simulation time. A time variable is declared with the keyword time. The
width for time register data types is implementation-specific but is at least 64 bits. The system
function Stime is invoked to get the current simulation time.

time save_sim_time; // Define a time variable save_sim_time initial

save_sim_time = Stime; // Save the current simulation time

Scalars and Vectors

Entities representing single bits — whether the bit is stored, changed, or transferred — are
called “scalars.” Often multiple lines carry signals in a cluster — like data bus, address bus, and
so on. Similarly, a group of regs stores a value, which may be assigned, changed, and handled
together. The collection here is treated as a “vector.”

Figure below illustrates the difference between a scalar and a vector. wr and rd are two scalar
nets connecting two circuit blocks circuitl and circuit2. b is a 4-bit-wide vector net connecting
the same two blocks. b[0], b[1], b[2], and b[3] are the individual bits of vector b. They are “part
vectors.”

A vector reg or net is declared at the outset in a Verilog program and hence treated as such.

The range of a vector is specified by a set of 2 digits (or expressions evaluating to a digit) with a
colon in between the two. The combination is enclosed within square brackets.

‘L__ WI & rdare scalars

T
e
o
Circuit 1 Crcunt 2
b[0] —
b[1] ; 4
b[2]
T— b[3] —1—-—
part vactors
4-bit-wids vactor b
Figure IMlustration of scalers and vectors.
Examples:

wire[3:0] a; /* ais a four bit vector of net type; the bits are designated as a[3], a[2], a[1] and
alo]. */

reg[2:0] b; /* b is a three bit vector of reg type; the bits are designated as b[2], b[1] and
b[0]. */

reg[4:2] c; /* cis a three bit vector of reg type; the bits are designated as c[4], c[3] and c[2].
*/

wire[-2:2]d; /* dis a5 bit vector with individual bits designated as d[-2], d[-1], d[0], d[1] and
d[2]. */

Whenever a range is not specified for a net or a reg, the same is treated as a scalar — a single bit
guantity. In the range specification of a vector the most significant bit and the least significant
bit can be assigned specific integer values. These can also be expressions evaluating to integer
constants — positive or negative.

Normally vectors — nets or regs — are treated as unsigned quantities. They have to be
specifically declared as “signed” if so desired.

Examples
wire signed[4:0] num;// num is a vector in the range -16 to +15.

reg signed [3:0] num_1; // num_1is a vector in the range -8 to +7.

|
SYSTEM TASKS, FUNCTIONS, AND COMPILER DIRECTIVES

A number of facilities in Verilog relate to the management of simulation; starting and stopping of
simulation, selectively monitoring the activities, testing the design for timing constraints, etc., are
amongst them. Although a variety of such constructs is available in Verilog.

PARAMETERS

Verilog defines parameter as a constant value that is declared within structure of module. The
constant value signifies timing values, range of variables, wires e.t.c.

The parameter values can be specified and changed to suit the design environment or test
environment. Such changes are effected and frozen at instantiation.

The assigned values cannot change during testing or synthesis.

Two types of parameters are of use in modules: specparam and defparam.

Specparam : Parameters related to timings, time delays, rise and fall times, etc., are technology-
specific and used during simulation. Parameter values can be assigned or overridden with the
keyword “specparam” preceding the assignments.

Defparam: Parameters related to design, bus width, and register size are of a different category. They
are related to the size or dimension of a specific design; they are technology-independent.
Assignment or overriding is with assignments following the keyword “defparam”.

Timing-Related Parameters

The constructs associated with parameters are discussed here through specific design or test
modules.

Example: Module of a half-adder with delays assigned to the output transitions; a test bench is
also included in the figure.

module ha_1(s,ca,a,b);
input a,b; output s,ca;
xor #(1,2) (s,a,b);

and #(3,4) (ca,a,b);
endmodule

//test-bench
module tstha;

reg a,b; wire s,ca;
ha_1 hh(s,ca,a,b);
initial

begin

a=0;b=0;

end

always

begin

#5 a=1;b=0;

#5 a=0;b=1;

#5 a=1;b=1;

#5 a=0;b=0;
end

initial Smonitor(Stime , " a = %b , b = %b ,out carry = %b , outsum = %b ",a,b,ca,s);
initial #30 Sstop;
endmodule

Parameter Declarations and Assignments
Declaration of parameters in a design as well as assignments to them can be effected using the
keyword “Parameter.” A declaration has the form
parameter alpha = a, beta = b;

Where

e parameter is the keyword,

e alpha and beta are the names assigned to two parameters and

e 3, b are values assigned to alpha and beta, respectively.
In general a and b can be constant expressions. The parameter values can be overridden during
instantiation but cannot be changed during the run-time. If a parameter assignment is made through
the keyword “localparam,” its value cannot be overridden.

PATH DELAYS

The delay between source pin (input or inout) and destination pin (ouput or inout) of module is called
module path delay.

Verilog has the provision to specify and check delays associated with total paths — from any input to
any output of a module. Such paths and delays are at the chip or system level. They are referred to as
“module path delays”.

Constructs available make room for specifying their paths and assigning delay values to them —
separately or together.

Specify Blocks
Module paths are specified and values assigned to their delays through specify blocks. They are used
to specify rise time, fall time, path delays pulse widths, and the like. A “specify” block can have the
form shown in Figure

specify

specparam rise_time =5, fall_time = 6;

(a =>b) = (rise_time, fall_time);

(c=>d)=(6,7);

endspecify

The block starts with the keyword “specify” and ends with the keyword “endspecify”. Specify blocks
can appear anywhere within a module.

Module Paths

Module Path delays are assigned in Verilog within the keywords specify and endspecify. The
statements within these keywords constitute a specify block.

Module paths can be specified in different ways inside a specify block.

Parallel connection

Every path delay statement has a source field and a destination field.

A parallel connection is specified by the symbol => and is used as shown below.

Usage: (<source_field> => <destination_field>) = <delay_value>;

In a parallel connection, each bit in source field connects to its corresponding bit in the destination
field.

If the source and the destination fields are vectors, they must have the same number of bits;
otherwise, there is a mismatch. Thus, a parallel connection specifies delays from each bit in source to
each bit in destination.

Example: Parallel Connection

(a =>out) = 9; //bit-to-bit connection. Both a and out are single-bit
// vector connection. Both a and out are 4-bit vectors a[2:0], out[2:0] a is source field, out is
destination field. Parallel Connection

a[0] out[0]

P out[1
Source 3[1]. .". btl*stinatiun

// for three bit-to-bit connection statements.
(a[0] => out[0]) = 9;
(a[1] => out[1]) = 9;
(a[2] => out[2]) = 9;

//illegal connection. a[4:0] is a 5-bit vector, out[3:0] is 4-bit.
//Mismatch between bit width of source and destination fields
(a=>out)=9; //bit width does not match.
Full connection
A full connection is specified by the symbol *> and is used as shown below.
Usage: (<source_field> *> <destination_field>) = <delay_value>;
In a full connection, each bit in the source field connects to every bit in the destination field. If the
source and the destination are vectors, then they need not have the same number of bits. A full
connection describes the delay between each bit of the source and every bit in the destination.
Example:
Figure below illustrates a case of all possible paths from Al0] @ B[0]

a 2-bit vector A to another 2-bit vector B; the specification implies 4 pa E
A1) & B[1]
{al A c= B

We can write the module M with pin-to-pin

delays, using specify blocks as follows:
// Parallel connection
module M (out, a, b, ¢, d);

output out;
inputa, b, c,d;

wire e, f;
//Specify block with path delay statements
specify
(a=>out)=9;
(b=>o0ut)=09;
(c=>out) =11;
(d=>out)=11;
endspecify

//gate instantiations
and al(e, a, b);

and a2(f, c, d);

and a3(out, e, f);
endmodule

//Full Connection

module M (out, a, b, ¢, d);
output out;
inputa, b, c,d;
wire e, f;

specify

(a,b *>out)=9;
(c,d *>out) =11;
endspecify

and al(e, a, b);
and a2(f, c, d);
and a3(out, e, f);
endmodule

MODULE PARAMETERS

Module parameters are associated with size of bus, register, memory, ALU, and so on. They can be
specified within the concerned module but their value can be altered during instantiation. The
alterations can be brought about through assignments made with defparam. Such defparam
assignments can appear anywhere in a module.

Example
The parameter msb specifies the ALU size — consistently in the input and the output vectors of the

ALU. The size assignment has been made separately through the assignment statement
parameter msb = 3;
The ALU module with its size declared as a parameter.

module alu (d, co, a, b, f,cci);
parameter msb=3;

output [msb:0] d; output co;
wire[msb:0]d;

input cci;

input [msb:0] a, b;

input [1:0]f;

specify

(a,b=>d)=(1,2);
(a,b,cci*>co)=1;

endspecify

assign {co,d}= (f==2'b00)?(a+b+cci):((f==2'b01)?(a-b):((f==2'b10)?{1'bz,a”b}:{1'bz,~a}));
endmodule

SYSTEM TASKS AND FUNCTIONS

Verilog has a number of System Tasks and Functions defined in the LRM (language reference manual).

They are for taking output from simulation, control simulation, debugging design modules, testing modules for
specifications, etc.

A “S” sign preceding a word or a word group signifies a system task or a system function.

Output Tasks

A number of system tasks are available to output values of variables and selected messages, etc., on the
monitor. Out of these Smonitor and Sdisplay tasks have been extensively used.

Display Tasks

The Sdisplay task, whenever encountered, displays the arguments in the desired format; and the display
advances to a new line.

Sstrobe Task:

When a variable or a set of variables is sampled and its value displayed, the Sstrobe task can be used; it senses
the value of the specified variables and displays them.

The Sstrobe task is executed as the last activity in the concerned time step. It is useful to check for specific
activities and debug modules.

Example:

initial #9 Sstrobe ("at time %t, di=%b, do=%b", Stime, di, do);

Smonitor Task:

Smonitor task is activated and displays the arguments specified whenever any of the arguments changes.
Sstop and Sfinish Tasks:

The Sstop task suspends simulation. The compiled design remains active; simulation can be resumed through
commands available in the simulator.

In contrast Sfinish stops simulation, closes the simulation environment, and reverts to the operating system.
Srandom Function:

A set of random number generator functions are available as system functions.
One can start with a seed number (optional) and generate a random number repeatedly. Such random
number sequences can be fruitfully used for testing.

Compiler directives

Compiler directives are special commands, beginning with ‘, that affect the operation of the Verilog
simulator.

Time Scale
‘timescale specifies the time unit and time precision. A time unit of 10 ns means a time expressed as
say #2.3 will have a delay of 23.0 ns. Time precision specifies how delay values are to be rounded off
during simulation. Valid time units include s, ms, us (us), ns, ps, fs.
Only 1, 10 or 100 are valid integers for specifying time units or precision. It also determines the
displayed time units in display commands like Sdisplay.

Syntax

“timescale time_unit / time_precision;
Examples
“timescale 1 ns/1 ps // unit =1ns, precision=1/1000ns
“timescale 1 ns /100 ps // time unit = 1ns; precision = 1/10ns;

‘define

A macro is an identifier that represents a string of text. Macros are defined with the directive “define,
and are invoked with the quoted macro name as shown in the example. Verilog compiliers will
substitute the string for the macro name before starting compilation. Many people prefer to use
macros instead of parameters.
The define directive in Verilog is similar to #define in c-language.
Syntax
‘define macro_name text_string;
. ‘'macro_name. ..
Example
“define add_Isb a[7:0] + b[7:0]
“define N 8 // Word length
wire ['N -1:0] S;
assign S ='add_lIsb; // assign S = a[7:0] + b[7:0];

Include Directive

Include is used to include the contents of a text file at the point in the current file where the include
directive is. The include directive is similar to the C/C++ include directive.

Syntax

‘include file_name;

Example
module x;
‘include “dclr.v”; // contents of file “dclr,v” are put here

USER-DEFINED PRIMITIVES (UDP):

The primitives available in Verilog are all of the gate or switch types. Verilog has the provision for the
user to define primitives —called “user defined primitive (UDP)” and use them.

The designers occasionally like to use their own custom-built primitives when developing a design.
Verilog provides the ability to define User- Defined Primitives (UDP). These primitives are self-
contained and do not instantiate other modules or primitives. UDPs are instantiated exactly like gate-
level primitives.

UDPs are basically of two types —combinational and sequential. A combinational UDP is used to define
a combinational scalar function and a sequential UDP for a sequential function.

Combinational UDPs:

A combinational UDP accepts a set of scalar inputs and gives a scalar output. An inout declaration is
not supported by a UDP. The UDP definition is on par with that of a module; that is, it is defined
independently like a module and can be used in any other module.

primitive udp_and(out, a, b);
output out;
input a, b;
table
// ab:Out;
00:0;
01:0;
10:0;
11:1;
endtable
endprimitive

Sequential UDPs:

Any sequential circuit has a set of possible states. When it is in one of the specified states, the next
state to be taken is described as a function of the input logic variables and the present state. A
sequential UDP can accommodate all these.

primitive latch(q, d, clock, clear); // d-latch

output q;

reg q; //q declared as reg to create internal storage input d, clock, clear;
initial g = 0; //initialize output to value 0

table //state table

//d clock clear: q: g+;
??1:?:0; //clear condition;
110:?:1; //latchq=data=1
010:?:0; //latchq=data=0
?200:?:-; //retain original state if clock = 0
endtable
endprimitive

Operators

Operators act on the operands to produce desired results. Verilog provides various
types of operators.

d1 && d2 // &&is an operator on operands d1 and d2 !a[0]
// Vis an operator on operand a[0]

B >>1//>>is an operator on operands Band 1

Operator Types

Verilog provides many different operator types. Operators can be arithmetic, logical,
relational, equality, bitwise, reduction, shift, concatenation, or conditional. Some of
these operators are similar to the operators used in the C programming language.
Each operator type is denoted by a symbol. The following table shows the complete
listing of operator symbols classified by category.

Table: Operator Types and Symbols

| I
Operator Type [Operator Symbol [Operation Performed [Number of Operands

* multiply two
/ divide two
+ add two
Arithmetic
- subtract two
% modulus two
*k power (exponent) two
! logical negation one
Logical && logical and two
|| logical or two
> greater than two

< less than two
Relational
>= greater than or equal [two
<= less than or equal two
== equality two
I= inequality two
Equality
=== case equality two
I== case inequality two
~ bitwise negation one
& bitwise and two
Bitwise | bitwise or two
A bitwise xor two
A~ or A bitwise xnor two
& reduction and one
~& reduction nand one
| reduction or one
Reduction
~ reduction nor one
A reduction xor one
A~ or A reduction xnor one

>> Right shift Two

<< Left shift Two
Shift

>>> Arithmetic right shift [Two

<< Arithmetic left shift Two
Concatenation |{} Concatenation Any number
Replication {{}} Replication Any number
Conditional ?: Conditional Three

Let us now discuss each operator type in detail.

Arithmetic Operators
There are two types of arithmetic operators: binary and unary.
Binary operators

Binary arithmetic operators are multiply (*), divide (/), add (+), subtract (-), power
(**), and modulus (%). Binary operators take two operands.

A =4'b0011; B =4'b0100; // A and B are register vectors D =6; E =

4; F=2// D and E are integers

A * B // Multiply A and B. Evaluates to 4'b1100

D/ E// Divide D by E. Evaluates to 1. Truncates any fractional part. A+ B // Add A
and B. Evaluates to 4'b0111

B - A// Subtract A from B. Evaluates to 4'b0001 F = E **
F; //E to the power F, yields 16

If any operand bit has a value x, then the result of the entire expression is x. This
seems intuitive because if an operand value is not known precisely, the result
should be an unknown.

in1=4'p101x;

in2 =4'b1010;

sum =inl +in2; // sum will be evaluated to the value 4'bx

Modulus operators produce the remainder from the division of two numbers.
They operate similarly to the modulus operator in the C programming
language.

13 % 3 // Evaluatesto 1
16 % 4 // Evaluates to O
-7 % 2 // Evaluates to -1, takes sign of the first operand

7 % -2 // Evaluates to +1, takes sign of the first operand

Unary operators

The operators + and - can also work as unary operators. They are used to specify
the positive or negative sign of the operand. Unary + or ? operators have higher
precedence than the binary + or ? operators.

-4 // Negative 4

+5 // Positive 5

Negative numbers are represented as 2's complement internally in Verilog. It is
advisable to use negative numbers only of the type integer or real in expressions.
Designers should avoid negative numbers of the type <sss> '<base> <nnn> in
expressions because they are converted to unsigned 2's complement numbers and
hence yield unexpected results.

//Advisable to use integer or real numbers -10 /

5// Evaluates to -2

//Do not use numbers of type <sss> '<base> <nnn>
-'d10/ 5// Is equivalent (2's complement of 10)/5 = (232 - 10)/5

where 32 is the default machine word width.

This evaluates to an incorrect and unexpected result

Logical Operators

Logical operators are logical-and (&&), logical-or (| |) and logical- not (!). Operators
&& and || are binary operators. Operator ! is a unary operator. Logical operators
follow these conditions:

Logical operators always evaluate to a 1-bit value, O (false), 1 (true), or x
ambiguous).If an operand is not equal to zero, it is equivalent to a logical 1 (true
condition). If it is 0lequal to zero, it is equivalent to a logical O (false condition).
If any operand bit is x or z, it is equivalent to x (ambiguous condition) and is
normally treated by simulators as a false condition.Logical operators take
variables or expressions as operands.Use of parentheses to group logical
operations is highly recommended to improve readability. Also, the user does
not have to remember the precedence of operators.

Logical operations A =3;
B=0;

A && B // Evaluates to 0. Equivalent to (logical-1 && logical-0) A || B //
Evaluates to 1. Equivalent to (logical-1 || logical-0) !A// Evaluates to O.
Equivalent to not(logical-1)

IB// Evaluates to 1. Equivalent to not(logical-0)
Unknowns
A =2'b0x; B=2'b10;

A && B // Evaluates to x. Equivalent to (x && logical 1)

// Expressions

(a==2) && (b ==3) // Evaluates to 1 if both a == 2 and b == 3 are true.

// Evaluates to 0 if either is false.

Relational Operators

Relational operators are greater-than (>), less-than (<), greater-than-or-equal-to (>=),
and less-than-or-equal-to (<=). If relational operators are used in an expression, the
expression returns a logical value of 1 if the expression is true and 0 if the expression is
false. If there are any unknown or z bits in the operands, the expression takes a value x.
These operators function exactly as the corresponding operators in the C programming
language.

A=4,B=3

X=4'p1010,Y =4'b1101, Z = 4'b1xxx
A <= B // Evaluates to a logical 0

A > B // Evaluates to a logical 1
Y >= X // Evaluates to a logical 1

Y < Z // Evaluates to an x

Equality Operators

Equality operators are logical equality (==), logical inequality (=), case equality (===),
and case inequality (!==) . When used in an expression, equality operators return logical
value 1 if true, O if false. These operators compare the two operands bit by bit, with
zero filling if the operands are of unequal length. Table below lists the operators.

It is important to note the difference between the logical equality operators (==, !=) and
case equality operators (===, !==). The logical equality operators (==, !=) will yield an x if
either operand has x or z in its bits. However, the case equality operators (===, I==)
compare both operands bit by bit and compare all bits, including x and z. The result is 1 if
the operands match exactly, including x and z bits. The result is O if the operands do not
match exactly. Case equality operators never result in an x.

Table: Equality Operators

Possible Logical
Expression |Description
Value
a== a equal to b, result unknown ifxorzinaorb |0, 1, x
a not equal to b, result unknown if x or zina or
al=b 0,1, x
B
a=== a equal to b, including x and z 0,1
al==>b a not equal to b, including x and z 0,1
A=4,B=3

X=4'p1010,Y =4'pb1101

Z=4'blxxz, M = 4'bilxxz, N = 4'b1xxx

A ==B// Results in logical 0

X =Y // Results in logical 1

X ==27// Results in x

Z === M // Results in logical 1 (all bits match, including x and z)

Z === N // Results in logical 0 (least significant bit does not match) M !==N //

Results in logical 1

Bitwise Operators

Bitwise operators are negation (~), and(&), or (|), xor (%), xnor (*~, ~A). Bitwise
operators perform a bit-by-bit operation on two operands. They take each bit in one
operand and perform the operation with the corresponding bit in the other operand.
If one operand is shorter than the other, it will be bit-extended with zeros to match
the length of the longer operand. Logic tables for the bit-by-bit computation are
shown in Table. A z is treated as an x in a bitwise operation. The exception is the
unary negation operator (~), which takes only one operand and operates on the bits
of the single operand.

Table: Truth Tables for Bitwise Operators

bitwise and | ¢ | X bitwise or 0 i X
0|0 0 o0 00 I x
1 10 I X 1|1 1
x [0 x x X | X 1 X
bitwise xor | 1 X bitwise xnor 0 1 X
0|0 1 X 0 (1 0 x
l 1 0 X 1 |0 1 X
X1l x X X X | % x X
bitwise
negation | result
0]
1 0
X X

Examples of bitwise operators are shown below.

X=4'p1010, Y =4'p1101

Z=4'b10x1
~X // Negation. Result is 4'b0101
X &Y //Bitwise and. Result is 4'b1000

X|Y //Bitwise or. Resultis 4'b1111

XAY //Bitwise xor. Result is 4'b0111

X A~Y // Bitwise xnor. Result is 4'b1000

X&Z //Resultis4'bl0x0

It is important to distinguish bitwise operators ~, &, and | from logical operators !,
&&, | |. Logical operators always yield a logical value 0, 1, x, whereas bitwise
operators yield a bit-by-bit value. Logical operators perform a logical operation, not a
bit-by-bit operation.

// X=4'b1010, Y = 4'b0000

X | Y // bitwise operation. Result is 4'b1010

X || Y//logical operation. Equivalentto 1 || 0. Result is 1.

Reduction Operators

Reduction operators are and (&), nand (~&), or (|), nor (~]), xor (*), and xnor (~?, A~).
Reduction operators take only one operand. Reduction operators perform a bitwise
operation on a single vector operand and yield a 1-bit result. The difference is that
bitwise operations are on bits from two different operands, whereas reduction
operations are on the bits of the same operand. Reduction operators work bit by bit
from right to left. Reduction nand, reduction nor, and reduction xnor are computed
by inverting the result of the reduction and, reduction or, and reduction xor,
respectively.

// X=4'b1010

&X //Equivalentto 1 & 0 & 1 & 0. Results in 1'b0
|X//Equivalentto1 | 0| 1| 0. Resultsin 1'bl
AX//Equivalentto 120" 1 ~0. Results in 1'b0

//A reduction xor or xnor can be used for even or odd parity

//generation of a vector.

The use of a similar set of symbols for logical (!, &&, | |), bitwise (~, &, |, *), and
reduction operators (&, |, *) is somewhat confusing initially. The difference lies in
the number of operands each operator takes and also the value of results
computed.

Shift Operators

Shift operators are right shift (>>), left shift (<<), arithmetic right shift (>>>), and
arithmetic left shift (<<<). Regular shift operators shift a vector operand to the right
or the left by a specified number of bits. The operands are the vector and the
number of bits to shift. When the bits are shifted, the vacant bit positions are filled
with zeros. Shift operations do not wrap around. Arithmetic shift operators use the
context of the expression to determine the value with which to fill the vacated bits.

// X=4'b1100

Y =X>>1;//Yis 4'b0110. Shift right 1 bit. O filled in MSB position.

Y =X<<1;//Yis 4'b1000. Shift left 1 bit. O filled in LSB position.

Y =X << 2; //Yis 4'b0000. Shift left 2 bits.

integer a, b, c; //Signed data types

a=0;

b =-10;//00111...10110 binary

c=a+ (b >>>3); //Results in -2 decimal, due to arithmetic shift

Shift operators are useful because they allow the designer to model shift operations,
shift-and-add algorithms for multiplication, and other useful operations.

Concatenation Operator

The concatenation operator ({, }) provides a mechanism to append multiple
operands. The operands must be sized. Unsized operands are not allowed because
the size of each operand must be known for computation of the size of the result.
Concatenations are expressed as operands within braces, with commas separating
the operands. Operands can be scalar nets or registers, vector nets or registers, bit-
select, part-select, or sized constants.

//A= 1'p1,B =2'b00,C=2'b10,D= 3'b110
Y={B ,C}// ResultY is4'b0010
Y= {A,B,C ,D,3'b001}//Result Y is 11'b10010110001

Y= {A ,B[0], C[1]}// ResultYis3'b101

Replication Operator

Repetitive concatenation of the same number can be expressed by using a
replication constant. A replication constant specifies how many times to replicate
the number inside the brackets ({}).

reg A;

reg [1:0] B, C;

reg [2:0] D;

A=1'b1; B=2'b00; C=2'b10; D = 3'b110;

Y={4{A}}//ResultYis4'b1111

Y = {4{A}, 2{B} } // Result Y is 8'b11110000

Y ={4{A}, 2{B}, C}// Result Y is 8'b1111000010

Conditional Operator

The conditional operator(?:) takes three operands.

Usage: condition_expr ? true_expr : false_expr ;

The condition expression (condition_expr) is first evaluated. If the result is true
(logical 1), then the true_expr is evaluated. If the result is false (logical 0), then the
false_expr is evaluated. If the result is x (ambiguous), then both true_expr and false_
expr are evaluated and their results are compared, bit by bit, to return for each bit

position an x if the bits are different and the value of the bits if they are the same.

The action of a conditional operator is similar to a multiplexer. Alternately, it can
be compared to the if-else expression.

false_expr —p{ 0

2-to-1
multiplexer | pm out
true_expr —p| |

cond_expr

Conditional operators are frequently used in dataflow modeling to model
conditional assignments. The conditional expression acts as a switching control.

//model functionality of a tristate buffer

assign addr_bus = drive_enable ? addr_out : 36'bz;

//model functionality of a 2-to-1 mux

assign out = control ? inl :in0;

Conditional operations can be nested. Each true_expr or false_expr can itself be a
conditional operation. In the example that follows, convince yourself that (A==3)
and control are the two select signals of 4-to-1 multiplexer with n, m, y, x as the
inputs and out as the output signal.

assign out = (A==3) ? (control ?x:y): (control ?m :n);

Operator Precedence

Having discussed the operators, it is now important to discuss operator precedence.
If no parentheses are used to separate parts of expressions, Verilog enforces the
following precedence. Operators listed in Table are in order from highest precedence
to lowest precedence. It is recommended that parentheses be used to separate
expressions except in case of unary operators or when there is no ambiguity.

Table:

Operator Precedence

Operators Operator Symbols |Precedence
Highest
Unary +-1~ precedence
Multiply, Divide, Modulus | * / %
Add, Subtract + -
Shift << >>
Relational <<=>>=
Equahty == l= === |==
&, ~&
Reduction A A
|~
&&
Logical
|
Conditional ?: Lowest precedence

Testbench

* Test benches are used to simulate your design without the need of any
physical hardware.

* Atest bench is actually just another Verilog file! However, the Verilog you
write in a test bench is not quite the same as the Verilog you write in your
designs

* |f the number of input signals are very large and/or we have to perform
simulation several times, then this process can be quite complex, time
consuming and irritating.

* with the help of testbenches, we can generate results in the form of csv
(comma separated file), which can be used by other softwares for further
analysis e.g. Python, Excel and Matlab etc.

Procedure

Testbenches are written in separate Verilog files

A test bench starts off with a module declaration

A testbench with name ‘half _adder_tb

Ports of the testbench is always empty i.e. no inputs or outputs are defined
After we declare our variables, we instantiate the module we will be testing

‘Initial block’ is used , which is executed only once, and terminated when the last line of the block
executed

DUT is a very common name for the module to be tested in a test bench

Half adder

Module half_adder(input wire a, b,
Output wire sum, carry);

assignsum=a” b;
assign carry =a & b;

endmodule

Half adder test bench

module half_adder_tb;
reg a, b;
wire sum, carry;

localparam period = 20;

half adder UUT (.a(a), .b(b), .sum(sum), .carry(carry));

initial // initial block executes only once

begin // values for a and b

a=0;b=0;

#period; // wait for period
a=0;b=1;

#period,;

a=1,b=0;

#period;

a=1,b=1;

#period;

end

endmodule

Jk flipflop

module jkff_behave(clk,j,kng,gbar);
input clk,j,k;

output reg g,gbar;
always@(posedge clk)

begin

if(k = 0)

begin

q<=0;

gbar <=1;

end

always@(posedge clk)
begin
if(k =0)
begin
q<=0;
gbar <=1;
end
else if(j = 1)
begin
q<=0;
gbar <=0;

end

Else if(j=0& k=0)
begin
q<=g;
gbar <= gbar;
end
elseif(j=1&k=1)
begin
q<=7q,
gbar <= ~qgbar;
end
end

endmodule

Using case statement
module JKFlipFlop(input J,input K,input clk,output Q, output Qbar);
reg Q,Qbar;
always@(posedge clk)
begin

case({J,K})
2’b00:Q<=Q;
2’b01:Q<=1"b0;
2’b10:Q<=1'b1;
2’b11:Q<=Qbar;
endcase
end

endmodule

Test Bench
module JK_FlipFlop TB;
// Inputs
reg J;
reg K;
// Outputs
wire Q;
wire Qbar;
// Instantiate the Unit Under Test (UUT)
JKFlipFlop uut (.J(J), .K(K), .Q(Q),.Qbar(Qbar));

initial begin
// Initialize Inputs
clk=0;
forever #5 clk=""clk
#100 J=0; K=0;
#100 J=0; K=1;
#100 J=1;k=0;
#100 J=1; K=1;
end

endmodule

Up counter design

Module up_counter(input clk, reset, output[3:0] counter

);

reg [3:0] counter_up;

// up counter

always @(posedge clk or posedge reset)
begin

if(reset)

counter_up <= 4'd0;

else

counter_up <= counter_up + 4’d1;

end

assign counter = counter_up;

endmodule

Test bench

Module upcounter_testbench();
reg clk, reset;

wire [3:0] counter;

up_counter dut(clk, reset, counter);
initial begin

clk=0;

forever #5 clk="clk;

end

initial begin

reset=1;

#20;

reset=0;

end

endmodule

Unit-2
Gate Level Modeling
Introduction

Digital designers are normally familiar with all the common logic gates, their symbols, and their
working. Flip-flops are built from the logic gates. All other functionally complex and more
involved circuits can also be built using the basic gates. All the basic gates are available as
“Primitives” in Verilog. Primitives are generalized modules that already exist in Verilog [IEEE].
They can be instantiated directly in other modules.

And Gate Primitive
The AND gate primitive in Verilog is instantiated with the following statement:
and gl (0,11, 12, ..., In);

Here ‘and’ is the keyword signifying an AND gate. g1 is the name assigned to the specific
instantiation. O is the gate output; 11, 12, etc.,, are the gate inputs. The following are
noteworthy:

e The AND module has only one output. The first port in the argument list is the output
port.

e An AND gate instantiation can take any number of inputs — the upper limit is compiler-
specific.

e A name need not be necessarily assigned to the AND gate instantiation; this is true of all
the gate primitives available in Verilog.

Truth Table of AND Gate Primitive

The truth table for a two-input AND gate is shown in Table below It can be directly extended to
AND gate instantiations with multiple inputs. The following observations are in order here:

Truth table of AND gate primitive

Input 1
0O |1 |X |z
0O |0 |O |0 |O
Input2 |1 |0 |1 |X [|x
x |0 |x | X |Xx
z 0O |x | X |x

If any one of the inputs to the AND gate instantiation is in the O state, its output is also
in the O state. It is irrespective of whether the other inputs are at the 0, 1, x or z state.

The output is at 1 state if and only if every one of the inputs is at 1 state.
For all other cases the output is at the x state.

Note that the output is never at the z state — the high impedance state. This is true of all
other gate primitives as well.

Module Structure

In a general case a module can be more elaborate. A lot of flexibility is available in the
definition of the body of the module. However, a few rules need to be followed:

[SR)

The first statement of a module starts with the keyword module; it may be followed by
the name of the module and the port list if any.

All the variables in the ports-list are to be identified as inputs, outputs, or inouts. The
corresponding declarations have the form shown below:

Input al, a2;
Output b1, b2;
Inout c1, c2;

The port-type declarations here follow the module declaration mentioned above.

The ports and the other variables used within the body of the module are to be
identified as nets or registers with specific types in each case. The respective declaration
statements follow the port-type declaration statements.

Examples:

wire al, a2, c;
reg bl, b2;

The type declaration must necessarily precede the first use of any variable or signal in the
module.

The executable body of the module follows the declaration indicated above.
The last statement in any module definition is the keyword “endmodule”.

Comments can appear anywhere in the module definition.

Other Gate Primitives

All other basic gates are also available as primitives in Verilog. Details of the facilities and
instantiations in each case are given in Table below. The following points are noteworthy here:

e In all cases of instantiations, one need not necessarily assign a name to the
instantiation. It need be done only when felt necessary — say for clarity of circuit
description.

e In all the cases the output port(s) is (are) declared first and the input port(s) is (are)
declared subsequently.

e The buffer and the inverter have only one input each. They can have any number of
outputs; the upper limit is compiler-specific. All other gates have one output each but

can have any number of inputs; the upper limit is again compiler-specific.

Table for Basic gate primitives in Verilog with details

Gate Mode of instantiation Output port(s) | Input port(s)
AND [andga(o,il,12,...13); 0 1,12, ..
OR lorgr(o, il 12,...18); 0 1,12, ..
NAND [nand gna(o,i1,i2,...i8); o i1,i2,..
NOR |norgnr(o,il,i2,...i8); o i1,i2,..
XOR |[xorgxr(o,il,i2,...i8); o i1,i2,..
XNOR [xnor gxn(o,il,i2,...i8); o i1,i2, ..
BUF |bufgb (01,02, ...10); ol,02,03,.. i
NOT [notgn (ol,02,03,...i); ol, 02,03,.. i

Example for a typical A-O-I gate circuit

The commonly used A-O-| gate is shown in Figure 1 for a simple case. The module and the test
bench for the same are given in Figure 2. The circuit has been realized here by instantiating the
AND and NOR gate primitives. The names of signals and gates used in the instantiations in the
module of Figure 2 remain the same as those in the circuit of Figure 1. The module aoi_gate in
the figure has input and output ports since it describes a circuit with signal inputs and an
output. The module aoi_st is a stimulus module. It generates inputs to the aoi_gate module and
gets its output. It has no input or output ports.

ale—

1
» q

ol
giD—i o
02

02

b1 e—y

b e—

Figure for a typical A-O-1gate cirenit

/*module for the aoi-gate of figure 1 instantiating the gate primitives — fig 2*/
module aoi_gate(o,al,a2,bl,b2);
input al,a2,b1,b2; //al,a2,bl,b2 form the input //ports of the module
output o; //o is the single output port of the module
wire 01,02; //01 and 02 are intermediate signals //within the module
and gl(o1,a1,a2); //The AND gate primitive has two and g2(02,b1,b2);

// instantiations with assigned //names g1 & g2.
nor g3(0,01,02); //The nor gate has one instantiation with assigned name g3.
endmodule

//Test-bench for the aoi_gate above
module aoi_st;
regal,a2,bl,b2;

//specific values will be assigned to al,a2,b1, // and b2 and these connected
//to input ports of the gate insatntiations;

//hence these variables are declared as reg

wire o;
initial
begin
al=0;
a2=0;
bl=0;
b2 =0;
#3al=1;
#3a32=1;
#3bl=1,
#3 b2 =0;
#3al=1;
#3a2=0;
#3 bl =0;
end

initial #100 Sstop;//the simulation ends after //running for 100 tu's.

initial Smonitor(Stime , "0 =%b ,al =%b , a2 =%b, bl =%b ,b2 =%b ",0,al,a2,b1,b2);
aoi_gate gg(o,al,a2,b1,b2);

endmodule

Tri-State Gates

Four types of tri-state buffers are available in Verilog as primitives. Their outputs can be turned
ON or OFF by a control signal. The direct buffer is instantiated as
Bufifl nn (out, in, control);

The symbol of the buffer is shown in Figure

1. We have in out
e out as the single output variable
e in asthe single input variable and contral

e control as the single control signal _
. Figure 1 A tri-state buffer.
variable.

When
control =1,
out =in.

When
control =0,
out=tri-stated

out is cut off from the input and tri-stated. The output, input and control signals should
appear in the instantiation in the same order as above. Details of bufifl as well as the other
tri-state type primitives are shown in Table 1.

In all the cases shown in Table 1, out is the output; in is the input, and control, the control
variable.

Table 1 Instantiation and functional details of tri-state buffer primitives

Typical nstzntiation Functicnzl representation Functionzl description

" pufifl (out, in,
contral);

Qut =inif control =1; glze
out =z

bufif0 (out, in,
control);

Out =inif control =0; elze
out =z

notifl (out, in, Out = complement of in

cantral); ifcontrol=1; else out =z
in

notif0 (out, in, L Out = complement of in

control); ifcontrol=10; elzz out =z

contral

Array of Instances of Primitives

The primitives available in Verilog can also be instantiated as arrays. A judicious use of such
array instantiations often leads to compact design descriptions. A typical array instantiation
has the form

and gate [7:4](a, b, c);

where a, b, and c are to be 4 bit vectors. The above instantiation is equivalent to combining
the following 4 instantiations:

and gate [7] (a[3], b[3], c[3]), gate [6] (a[2], b[2], c[2]), gate [5] (a[1], b[1], c[1]), gate [4]
(a[0], b[0], c[0]);

The assignment of different bits of input vectors to respective gates is implicit in the basic
declaration itself. A more general instantiation of array type has the form

and gate[mm : nn](a, b, c);

where mm and nn can be expressions involving previously defined parameters, integers and
algebra with them. The range for the gate is 1+ (mm-nn); mm and nn do not have
restrictions of sign; either can be larger than the other.

Gate Delays

Until now, we described circuits without any delays (i.e., zero delay). In real circuits, logic
gates have delays associated with them. Gate delays allow the Verilog user to specify delays
through the logic circuits. Pin-to-pin delays can also be specified in Verilog.

Rise, Fall, and Turn-off Delays

There are three types of delays from the inputs to the output of a primitive gate.
Rise delay

The rise delay is associated with a gate output transition to a 1 from another value.

0, xorz

t_rise
Fall delay

The fall delay is associated with a gate output transition to a 0 from another value.

1, x0rz

Turn-off delay

The turn-off delay is associated with a gate output transition to the high impedance
value (z) from another value.

If the value changes to x, the minimum of the three delays is considered.

Three types of delay specifications are allowed. If only one delay is specified, this
value is used for all transitions. If two delays are specified, they refer to the rise and
fall delay values. The turn-off delay is the minimum of the two delays. If all three
delays are specified, they refer to rise, fall, and turn-off delay values. If no delays are
specified, the default value is zero.

Example--Types of Delay Specification

//Delay of delay_time for all transitions
and #(delay_time) al(out, i1, i2);

// Rise and Fall Delay Specification.
and #(rise_val, fall_val) a2(out, i1, i2);
// Rise, Fall, and Turn-off Delay Specification

bufifO #(rise_val, fall_val, turnoff_val) b1 (out, in, control);

Examples of delay specification are shown below.

and #(5) al(out, i1, i2); //Delay of 5 for all transitions and #(4,6) a2(out, i1, i2); // Rise
=4, Fall=6

bufif0 #(3,4,5) b1 (out, in, control); // Rise = 3, Fall = 4, Turn-off =5

2 t0 4 Decoder

EXAMPLE :2 to 4 Decoder

module 2 to 4 dec (Z,A,B,Enable);
input A,B,Enable;

output [3:0] Z;

wire Abar,Bbar;

not VO(Abar,A);
not V1(Bbar,B);

nand NO (Z[0],Enable,Abar,Bbar);
nand N1 (Z[1],Enable,Abar,B);
nand N2(Z[2],Enable,A,Bbar);
nand N3 (Z[3],Enable,A,B);

end module

D Flip flop

module dff from nand(Q,Q_BAR,D,CLK);
input D,CLK;

output Q,Q_BAR;

wire X,Y;

nand U1 (X,D,CLK) ;

nand U2 (Y,X,CLK) ;

nand U3 (Q,Q_BAR,X);

nand U4 (Q_BAR,Q)Y);

end module

MASTER SLAVE FLIP FLOP

PRIORITY ENCODER

Inputs Outputs
(3) t 0(0) Do[Di] D2 D3| Y:[Yo|V
1(2) 1 D‘ I 0000 0
—} LT OT 9T 00 00 O 4

(1)—y
i10719190]11]1

‘ 0(1) k (x| 212|091
Vv

1(0) | AEEEAFAERE

PARITY GENERATOR
00 >
Dt P> -
D2 >

=D
—
B =13 f } 0dd Output

05 =
3D

D8 —{>
Enable

tven Output

Implicit Nets

* If a net is not declared in a verilog model,by default it is implicitly
declared as 1 bit wire.

* For this purpose we use compiler directive i.e default _nettype
* Syntax
default_nettype net_type;
* Example
default_nettype wand;
e With the above declaration all uncleared nets are type wand.

Module example (Q,A);
output Q;
input [3:0]A,B;

xor g1(w,A[0],B[0]);
xor g2(X,A[1],B[1]);
xor g3(Y,A[2],B[2]);
xor g4(z,A[3],B[3]);
or g5(Q,W,X,Y,2);
end module

Full adder

Verilog program

Example aoi gate

Verilog code

Q
=
(48]
o]0
[e)
(O
-
cnlu
-
O
C
()
O
i)
O
T

UMIT -3 ‘ (1)

BEUANIORAL MODELLING

INTRODUCTIO N,

Q;»:lmu?ﬂmn': Leuel mpd.:{ﬂ’”? GConshilules desfan o"cgu'.}am'n al an
g w0)
abstratl level .« One Can Weualize -the Ciradl n ferms ﬂ; e f{n‘l
0 o
modudar Janckons and -H-.rl::r Meliavivar . b can b desalbhed al a -fdr‘rtlm

_qgf !UJE‘E E:L'g{'”' ?ns[huf E/ ?:’H;:"JJ t]ﬂ:{T'd df‘fUﬂ EL*T”) ?mpffmrn;&h‘:ln
dfl'ﬂtl'fs.
ija:ru;lf‘gns and —ﬂg;fqnm(qgs ;
| e d‘fﬁf?n dr.“é:r?‘rﬁon ab he behaunural fevel %e alone +r‘h:mr-]5
o Sequente of n.ﬂ??nmé'ﬂk- These are called ‘pmcm’urdl’ alﬂjﬂmml{.i .

Fal o
“The r)mr:fchlr! aILF7nm¢nL 15 ('\ﬂtﬂt.i'fnzgd b,/ 'fhf

-rﬂl'fcm::f?.' o
= The ﬂu“:"jnrm-nﬁ % done Jhrough jhc o jymbr‘{ ay was
dhe Case with -the Conlinuow a”';}nmenP carlir.)

— -An c‘}rrrnff'm f¢ Canied out and *r'iw. resull nurgnfi
~i'f'rmu_3h the "=~ fj}f'tmft‘r ‘0 an o/wmnd S‘r’n:f&‘.cl on the left Side
ol -the "=" _S'Tjrﬂ- or emmp!e, M= -N. —te -lhe Conkent o req N
Ts Gwmrfunm&m' and atzﬁJﬂ.{rt Jo -lhe vey N E:{-sc:“[. The au??mﬁrn!
s a:s:s.cmttﬂah'y an u,adcifrfm] arﬁuw‘j.

— The © cralion on -the tight Can “nvelve oOperands anel
O{’”ﬂﬁmst “the qnemﬂc‘h Can be eof d;;{[ﬂgng -[,/Pﬂ_ ,ﬂg’m# UniSables -

nambers — veal or ‘fntl-,7er and <0 on.

—» Al the CQF"H”“’S are ?L:'-Jé‘ﬁ pm Lables' . The Hormat nf
Uﬁ*nj -themy anrd -he yules 0/ yecedence }rmafr: the Same. .

—= The df:emndt nn -the rF%hP Side Can be of the. inel
oI Varfable -,'7,!1\. They Can be Scalars or Veclors .

¢ o
> L 'ﬁ ﬂﬂ”;m? "'ﬂu m::?n-fﬂrng {}n.s:sf-:'na/ o,’ -the net

qP
o -the i’?[:t-‘-mﬂﬂli gr} -{he ﬁf‘lﬂ’mn zn/:wﬁfun--

eq) N = m/j; Alere m and £ have fo be Same

www.Jntufastupdates.com seesin cmseanner 1

| o S T A Rt

]

|

T ———— -

| Hypes of qaan fhes — 5[7'["{'?/?:*&” a .tr!, 'ﬂ’l(cyﬂl “lyre 1 real,)
realfime, o ﬂ?f*m{‘ri .{7/)(. ﬂ/ dods o deelared 2. aduanee:

— The cperand o he left of cAhe =" E_Tf:”f/m bas 4o be

o/— the verrabfe - Tt s J{Jffr-/‘fr;:aﬁy declarved {T({ﬂ}'({f;??f’y. It Can

be @ ffflfﬂ'; 4l U('n"clr,. a {Jm'f umfr:r:, or a (}lnf:u’fum'fce{ l/rr!nr

— procedural ﬂ!!ﬂnn’}en[s are yery Much ffﬁf sequential
.S{t’f-{r’f'ﬂfﬂrj tin C» MDJMH!EIJ 'ﬂu"t/ are {arl'?P({ oul one al a ‘f:‘jﬂ;l'
Jf?urnrtrﬁa”? . ik seon s a jf;ftr/foﬁd f]/’“c'r('gn 6N ;_.H” rf‘f}h! b
Canied oul, he vesult s nss?7ﬂﬁc1' o ~the 7““”-{”!?’ ar=age h’;’f

— o examp e M- mtt; Ap= NY¥ NG The above —fom asck o’l
|. i Pma*durm Pacied cuf-fh?n an always }’Jfgfj:1. r_ifmrrany —fhn7 ore

Cariied out fe?urnﬁh”y tn the Order 6{::(?/16

The Se tt:m’?ﬂql ﬂafur‘e. n/ -the ass'rﬂ nmezn(s ;p?ufre-j
-the fomn(fs on Adhe lefl o the cuﬂj?nmen.{* o' be of H:f? "E.[/Pg.

- FUNCTIONAL BiFUR CATION

(D“Fj“ d“-"“f})‘t%” ab dhe behavioural fevel % done
i Aerms ol pyocectues of o -ft/lruu; one Gnvolves - funchional
dutﬁpfﬁm and falalinks of funchond Uk, T Ty canded oul Throu
-7-":: a Serics ol— blocks under an "afu.w'.{s ’
The second Concerns 4$mulshon - s gl-mfr”n?'Fg{'mEr
S{Mﬁn -the £fmufd(far} flaw, ﬂgJSfWFﬂy ‘he ,ﬁw::es_s; alt -these (Can
be ﬂ‘tnﬂ'(f thi; under ‘the ¥ afmm/s " banner, an " ?n?ﬁpaf ! banner, or
*fhrfr Combinalions . -tlowever, = gach ahvaff’ and each Gnifial blode
Ynitiales an adf:;fh{ s'?'muftihiﬁn process .
Tn qgeneral —the achufle wrih alt Sueh blocks slovls ol
-the Sf'rnu[ﬂfﬂfj e and flows Conmrrcnfh’: dur?n;? “the whele

Sim ufcdfnn /)mce‘.ss .
-/ Pmcedum - block 01, eSther 'JVP"-'- ey »
almmrl; . '

www.Jntufastupdates.com seesin cmseanner 2

(%) |

. _uu.:.m_.u. X U)

£u.._.. oM @ou vV TEP&mﬂC 34 un) Hielg YL Y2019 24|

to Lo c..urmn

2Yf- v T.Ea_.t_.u 2)0 xun,n_r a4~ Y= _uué__ fe332 u._ﬂaf....m_n? :Cn
.xuﬂ_ﬂ A~ ~r“.._ h.._.,_uﬂ 24}- cr_o.p_n .\L:.vrcw,_HJm __d.:ﬂwu..uu_u_.m. .mr:..

FIYeLI) P
ﬁl _.._.n—m.“hﬁ_— UET. Cm.I*rnj _Uu.nﬁ—ucn.. ALY mv_.:ﬂ_.m_

2 c._u_,:..mﬁ mum._r:nw__uc Yl Y-

v.ﬂ_cwEﬁm+m ,_:.;Ec_.ﬁmmu Ej_.,.uuﬁa_
Vmco;Ed_uvT 2)quuon {020}
[}

(o3l ™ hungors)
il

?tubn_ m_._dn:._u E“_a P_cnﬂ Y0|9 2yi- %_ cowﬁwdﬁu
24} -za u_._c:. LU_E_H J4ane 94}- m..‘_,.._ur.uu?—m.

FaL

>92919 ...T.. wou mcdnrun, p—

®
_.

(5919 m?cn.:_d
L_a.q. rcoq.ua_ﬁiu Ju?na up m.._q_ﬁ.mmmm uaﬂc.__..m. 4L

TLGT

Yoag ~4a - &F.

mra_...._.._ﬂ _Wu. joiplan - E.ﬂ._.mmon_ A0

ala o

mmmrT oMy~ _.__co v 1Y pat hummm S} A elq %u H_Lrl_x

WWW . J nthaStu pd ates . Co m Scanned with CamScanner

——— T

TNITIHL CONSRUCET (: /)
S e
A e L cf Pn_'(r:’ f'l'“"ﬂ; ﬂi&?bhfﬂf‘nlz u.‘fifrl-fhﬁr) an (;n‘?”ﬂl

‘ Consbrucd arc cyewled Dni‘tf C‘nft‘~nnrf;'”?ﬂf Tov, ot Ahe '!‘m"'j

[oyt e - - C].‘n L4l
|5[>ftléfdr Jor -the Tt‘S}!t‘fhu’a m*,ttgnmfn'!ﬁ- the (il ial {”f’””

(!iﬂfdf!fﬁi’fd' h:/ _H‘Jf -fDH[}LUt,Jn? .

;
i -to be

-2 an HHV fl.‘.i;;{ﬂm*’ﬂl .Sﬂg'ftmpnf' ~the fc,’ﬂ -;mﬂd _E:d('_

has -t be o gforage lgpe of clemenl « It Can be -a req, ':nhzc}n,
or real ‘inﬁx of 1,";:.{?::21'@.. “The rtw??hI—-— hand Side Can bs a 5Fura3€

-hjpc of varahle Creg, ﬁ’n!—::ﬁtr, or jeal 'flfpc: of Variable) or a nel .

;x" —b':*{-@f.! -he prrrfduraf aj_g??;nmmﬂs nppear w?f!'f:n a
Iy - #
gt end block

— DIl —he Profedt.lrn' ﬂdﬂfyﬂrnmfi are enetalked
Jcr{tlm#'u”:{ -gn dhe Same onder ay -mﬂ{ QFFEM {:n “the deT?r]
difﬂ“:}"‘i‘”- The Trilial block above does ~thice
G:n{m”?ﬂt] achuilies -the Sﬂnu{ﬂ'ipf:m Yern .

—> jn?f;}\!?zc The .Sl"e’:f!ﬂf 5;9{- p/ ”17‘5 af: -the .S{mf'-

i Cfmn?e values of rfj:g al- Pmd:-!g.rmfned’ Snslances uz
PJ:’mE- “these —forr -lhe Tﬂ/ﬁlfl‘i o -the wodule under -lesl and Hest
S A desiyed rest JE?“"-”“

e Sttn‘D fnlu(n;’fﬂn al- -the Sf)cc'r'/fér)’ -f:mg_

ALwhaYS CONSTRUCT
ALWAYS CONSTRUC

The a(wmys picess S%n‘fﬁ}s arﬁu?ffes 4+ he
execled on an afwnys bads © s essenlfal rharaclerishics

qare . 0
! e
—» Py kehavioural feyel c{cs'r’?n descr'?fd/:ao ts done

Ul?n? an aftua'fs block.
— The [)T'I'FEFSE has o he 'Hflg?t‘!d oﬂ{' '53 an event

or a change fh a nel or a4 ﬂ:f;.
= The process Can have one asignment glatement
Or mufﬁ};l'a m;?gnmm{ siafen')fnlf . Tn Ahe [latter (oue all -fhe

www.Jntufastupdates.com seesin cmseanner 4

“1he 05.5??””“"”!5 are yrmfl)?(! -r'h?ﬂ'!'flt*r lc;rﬂl?n 0 ”fmj:n— C)

L end” Construcl

—> Nmmm’fy dhe clalemenls ae eneeled _Sp,]“m_/;-},ﬁy o e
Or'ﬂ'i'f '”16.7 (‘cnjmr.

“Luent_Contl -
7!}&‘. a{tvay; (me-k ',}5 (’Hf.ﬂl{'f’f{ wl_!y‘nf.rd y f‘;’ /
éﬁdlfssf . [+ t;S ﬂf‘ft‘jsaly “'fu L H.:/ Qa [‘un(ﬁhgn or a Sttt 0

T if n : _ J;J n
Condihons | which # LU’“e Steer “the 3‘/-519"3 g's'n -the (::(Z: C;fonz
of he block. -ﬂ!‘{rmcr[n.'r!;j Such as J{awmy _off

by SPCC?A/E}U an evenl f;n_:rc:ffﬂcJ bj The .C?mﬁof “@"”,

@Cﬂeyedac) clk | F.)tt'm!fj ~the ,,fgum,?ﬂj block at -lhe
't’)cha'ifUc eche of b ¢y (Variable) cik.

. @[Pu_;ed'je (k) encackes e ':’onucr’n? black od -the
Pﬂ.’;ll,f‘.’f pd?t o} -the n:j (Variable) ¢ . .

@ clk } E'IEHLL(’J ~the pr{'awﬁ—;? hlock at -the hoth EJ?F&
Oi[clK -

—ﬂ]E eumf& can be Chanjfﬁ fm reg, ?nﬁe?er,rgaﬂ or
ngﬂa{ 00 a nebte hese ghould be declared before hand.

N a'ﬁi’hfﬂ C1 fo??c cj[)ﬁraffur) ?5 ermitled a3 an
event. The @R’my 3?’3;17{1'}5 " evecle he block Tf any tne ﬂf
“the cvenls akes Pfare g

The 'paswfug Jandidion Hfor a re{} Typc Sf‘njfe hit
Varfable fo a c%an?e fom 0 o 1.

for a faﬁ?f— Varfable & % a —hansihin -/mm
false o Arue.

“The " Pased?e “ tandshon Hpr 4 g:?}nq.“ o a nel

Can o} -Ihree 'f'w:r.s:
0 o 1
040 X or 2

X o1z 4o)

WWW.J ntufastu pdates_com Scanned with CamScanner 5

e

3

P Ao o

X

The M né‘gf’f{g" ! rfrnnsT-Jrgﬂn Jor a
Can he of Ahree diflerenl '{W,p}

or 7 4o 0.

-.ﬁ“?ﬂﬂ{ on A nf{ @

l 1 4o X

Ot

yA

P he evenl Speditizd %
hfﬁ, ﬂn’j; ﬂ-s [.GUJ.E E‘rﬂ?ﬂ

I:n -—i{-rmg m! a mufﬁﬂb?{
bt Yo Considered Aor Ahe

!u(ﬂ nE'

o
{

—hansilion . fhﬂn?ti o -the olha bils are onored . The event . bas
—ed - fﬂWﬂnj -DH 6! a bleek ie appffi-afm'a Hn{?’ 4{1 be ..-:/urm/g
_ hlock .
N |
.-—/jffﬂ'fﬂ’rﬂ o -the ﬁ"-ff’nl UEI'S-?DD ﬂy’ +the LPM

~the (pmma D[)fra'fﬂr {y) [cu./s ‘the Same vyole as -lhe
k‘tlfﬂmfd ﬂnfv do -the alwaye bloeky 07 —he Jwo pan be used

0 0 -
fnlfrrhan?ﬁly o woa meed *fﬂl“"'?' Thus , he rfﬂfl'aw?n are
Tdenbical ! @ (o or b orc). 7
@ (a orb,c)

@Cﬂ:b,c) @ (a, b orc).

EX-AMPLES

Versohle Counler module

Cgunf—t‘_mp (a, uk, NY;
?ﬂrut ClK ;
'Tﬂ’)ul: (30N,
Olll'P“l (3:07a;
-re_(J [30]a;
ﬁ:ﬂﬂ!?ﬂl a = 4—Ibﬂ[]ﬂﬂ';
[!IUJ&L‘E. (2 ne.qedqe clk) a=fa==N) ?‘I—I bobot
M-1'bY g

e nd mUdLlLﬂ_

WWW.J ntufastu pdates_com Scanned with CamScanner 6

;)
TEST - BENCH

medule sl _ Ct"ltfn!ﬂll(?;
Ircrli CIK)
1eq C3i0] N,

wive [(3i0]a}
Counter up e (a, ik, W)

Y d
bp{n
k=0,
N o= q'bron, \
end
l:L'ILuml.s H 2 clk =nclh;
Tl §wodthor (§4ine, " a=Vib, cik= 7by N=%b) EIH,N);[
ﬂndtﬁ[}dulﬁ
module Counkerdn (o, ik, NY;
?nr.ul cIk!
mput (31070
Oulput (3:079;
Tﬂ] (3:0)a;
nihal a = 4'boooo;
nlummis @ (nerlo dc,e cik) a=la==4 booot) 2 Nia-1'bl; 1
2ndmodule
module upd Counker (a, ¢y M, 0_d);
Toput i, u_d
Topuk (3:0]N;
Oubput (3i0]a;
m] (3'0]a
il a - 4+'boooo 4
alw 5@(ne.<:‘ec|rlz ak) a = (u_d)?'C (a==N)7?

I
4 beooo, a4 1'b1): (la== 4'boooo 9 Nia-1'bt);
www.Jntufastupdates.com scmeduit conscanner 7

enrdrmodule (&)

module r_lmr}c! cou (o, ely, el Nyu_dy;

Oln[ul‘t cly, ck, u_d|

Oulrll! (z:01Q]

'?nPut (3i0]n;

1eq [3:0]0;

T9kal a = 4'beeoo:
olmm,g @ {neried.ra Ik O puseclc-‘a chya = Celry? 4'he
(Cu_d) 9 ((a==N) 9 4'boeoot a4'hi)} (ta==4"hoooo) ? Nia -1 b)),
endmodule .
Emmpla ol r.e_rrfr,l:rr
module ehibrtter (o dk | r-L);

anle clK, Y=L}

Outpul [#:07q;]
Yeq(+i0]0;
frﬁﬁaf a = ¢'hol !
nhum.‘s (@ [necincitlc clk) be:fm a=lr-1-9
Cassi'bny: (a<<i’b);

end

cnrl'mudulﬂ

clocked ﬂjﬁ;l \nfv

modale dff (do, dV, clk); Om‘Fuf‘
Ao ‘?nrtﬂ: di, k! !’E1 do;
N
do = 1'bo;

nlunmis @ Cnrc]rif{rlc. k) do = di s

end module .

—

www.Jntufastupdates.com scmeduit conscanner 8

™
<)
J

1, RN

40 lal<h
module
ditlen Udo, dY) en);
Dulpuk do) insul- di, en;
Tfrl do;

OO0
mona

do = I bo;
nlujniJ% @ (d7 or en)

W (en) do=di;
endmodule .

clock wnuﬂﬂrm

0)) '!ﬂ {D l
Consider —the da‘i:gn C{cscnr wn - uneg a -.L'lmr,;
43 clf = wclk; G
I o ¢
“The. 3¢=_7uencr’. gl {){aara}-leﬂr) rfnkrn?)o!au: wiihin This

(ine. Sar]mmf- as Hfollows !
E.C],'.iff) "H}(’_ ‘g.-_.gt-pm Cnmr.g across ._”,m Séa_frmmi, t[ﬂ-é

Schedulss a0 ackifly " 3 ns (ater.
¢
M Ahe end of -he 3ans, the Value of ek 15 sengea
“the censed Value s fﬂnfﬂj’rﬂml"ﬂlfd and -then Stored -fcm[)aﬁll
/
7})“‘), —1he Sh‘lh‘?(f Ua(’ue ?S ﬂj‘i? nE’CJ —fo ~the cfr.rtk

which Com[)fﬁk-b the achurly of the niumys blocks ; e
a?mn ! E'.Jrle’tur’r:bﬂ Yesumes n{ 5£gl91.

A SSIGAMENT T DELHYS
The d’v’m/s r‘t'ffrs o the lsrec?/:dc nrmﬂ*/ it
(]“aﬁfﬁ:‘g' 4 U‘arfﬂfy Oyﬂ Fnss?bttjﬁﬁc; f‘f .;F{’trfy?ﬂy c:fefnu.js To

(]
amjnmcnls exisl. Considen -the nss?:?nmeni- a.hug::ys #tr3h=q;

xf'?mtffdﬂ;ﬂ encounters s abt zero Lome ard posls -!F{uz
the eative admd? o be done 2ns lalec the am—'}:z'nmrn‘l i

Scheduled be I’E‘Ft'ah’d elery 3ns, '?rrf’s{:ec'ﬁvc c-/’ eohethey a

www.Jntufastupdates.com scmeduit conscanner 9

e e BN e R T

|

Gl [§ e 0 ———— e e
C;m“?f-g in ~the Meantime . 7
Tn[‘r’n - fIJJanmm{ c{cfm/s ; .
TIn Contrast, -the inira - {u_!??nmm{ cw’cfm?r Carries out
~the m;?jnmmf in —wo Fnr{s.
g
A = 2l expresston
Alere the anrfs,s{nr} Te ccheduled - be
revaluled au Soon as S i en countered . —theoevey, 1he result g!
~the evaludien fe asyianed o he r‘fﬂhh hard g¥de 7uaﬁf?’4 o
ﬂﬁ'ﬂ- n d;’a_v .FPEFTK;:"CJ {;Jy dal. d(Can C’)ﬂﬂ?i‘ fer b{’ an rﬂJ‘é?El’

or a Cons tant anpra;;mn.

!
ZFem drfa,y !
- C{C‘flﬂ.l t"f 0 ns dDE‘S r}o'iz rﬁﬂ”? faLldie r_"n"}y (‘l’p’a?.

~Howeuer, G epsares <that +he a.ts;’?nmmf Hotlowing s exeuled
[ast 2. “the conceined -hme slok. eflen Vb 5 used ! ~to avord

o o @ Q ccedence c-)t €H¢u1!‘ﬁ’10 EJ/ a;_l,?nmgn{gl ‘
rﬂdfffSFﬂn oy The Pr edce . 7 .

watl (onshuet .

The oatl Conslruct makes —the £?mufa'{nr waik Jor 1he

;gFGC‘i‘!(‘F‘ECf ey mssfun Hdo he -'1'ruz‘lrj before Fmr_‘edﬁ'} lu_r‘}‘{h “the Jollpuws
..'nv ag_;lij?nrnrni‘ df' (}'m::f 0/ r‘IJSJFﬂfﬂ(ﬂ{J- [ts & n:T?l has -he

rf Loart (,ﬂ’f?lt’lﬂj am]nm‘ni'!j aF}m Cean be vaviable | Jhlf leﬂﬂ

o an cnf:arcssfun Tnvolving -them. ,Tf aiPha (s an

n a ﬂfl ! o.r o o ? L=
C Y ”i' ﬂs Elmhm.[_p_d} Jf Hrue n;gjomﬂﬂf I 15 (arr:ed Uul.
El/)rﬂf&!ﬂr), e B - m”G block 0
{ haw_ a rou D1£ aist Wﬂir wufrhin A o tn
One (Can alsp ‘J F ! 2 e 42 D _(:
mﬁgr}mfnff The acdivi e level —SGensitnie tn meliere

= St‘ﬂ.sfhdh‘a natlure 9{ event 3{39(:[’?1*(!'

place
“n contrast I zdﬁf’-

¢l the value of b c.hanyfi when el g Sfeady, +he value

—Ihrouwah @.
' K! *t‘:‘m‘n” y =ihE rreedunnl a.sgrrj nmmf
pectheety P]

@c.m a=bh; ﬂd!r{]ﬂS +he UEJHC D# B b a cwhen cIK chan?d;

nf Qa nﬂmafn; LlnafEata'

maj;f (clK) #=2 a=h; ~lhe &fmufg}nr wﬂﬂag Jﬂr- +the clock
4o he h"":‘]h and -then changm or - astigne h v a Lu'ffhaa'rfa_rj

www.Jntufastupdates.com seesin cmseanner 10

ﬂl 2 n§. “the nﬁ?ﬂﬂmfﬂf w!:” er' H‘-WJ;H'J as J'ﬂn? al ’1;)
¢ "
~fhe CIK Temacny hrr/f}.

DESIGNS oF_G_Ef@UIOR_m__ LEVE L
medule adtheh (0,0, b); m:!pud 0; ‘m}w! (1io] a,b;

H’v 0, al bi, 01 aﬂmmlg () ta (] v alo] ot

bh(t1 or ble] beﬁn al= 2a) hi=Xb,
Ol zaitl bry o=+o01,

end
¢ od roodule

mudule nrﬁ:l;eh{u.n,h}j Uulrtll‘ o)}
fnPul: C1i0] a)bj veq0;
ﬂlLUt'lli&@ (] 6va (o] or b0) ovbror)
B = w ((Xa) Il (¥B)))

[PLOCKING -ANID NON- BLOCKING _AcSIGN MENTS

| that Ts, One

These cve eweculed Qﬂquc‘nffuuy- .
5h1{?rnmf' ([15 e??ltmf-rd, and an, ~theny ~the ,—fﬂ[fmufn ONe tr‘;t‘.l
oxcaded. such auTpments félmk the encarlion of the »f'g“mmn?
fob of qscianments “ab nn?jama _q{.?p —tence, 'fhé‘? are called

o bfﬂrkﬁ?? ggsrﬂnnwnfs k

A Jmﬂﬁ? Called "fhﬂd ﬂﬂnbfnc.kfr? ms‘?nmnf ! ?5

o g
aua?ab{r_' —fn; Queh jTua’!mn; - '_nki _ngbg{ v e=" Clani-hes a non-
b!mk?n? acnmenl . The Same Symbol % nifies he " less I’!ban
o D]jemlﬂ}’ pm The Cﬂﬂf’Eﬂ— C}L an UFrm.‘ﬁ}m The

or equel Ao 4 el
7 . 'TBg r‘?’k‘!ﬂr} c}mrm[emin

Cordent eddes the role nf -he J:Vrnbﬂf

t?:ﬂ a non blockin m; nment frjs —fhﬂaf .

Contrrent oy fhat of 1the —I!m'(ﬂtﬂfﬂ?‘ ass:«gnmcn{ or m!ur.hi,
l\ron Btﬂfk?ﬂ? ,—,Oggﬁ(dnmml ﬂﬁd D@!m{s

“these are mtrméc'c(dafcufs.- of ~he flszF nrﬂrnf;

'f‘lFf and -he hia - assHnment '{‘P‘:‘ - Can be nﬂ.!l'ﬂ{rﬂ{'jffu cu};'r’h

nonblocking austpnmenle also. " The. J'rt;l)fFfJ,C of -thetr pperation 1s

o

| Sfm“r'fﬂr ~Io +thal I.‘.’f‘?‘l’b Hﬂtk:}}? m;r7nms’n&.

£
s exeahon

WWW . J nthaStu pd ates . CO m Scanned with CamScanner 1 1

|
|

P— - e - S i, il T — -

e e~

|
]

: N
ME Cae SIhTHAENT &

ﬂﬁl{ Hi‘fﬂ!l‘f!

group of gdate

The caie cldlemenl 5t an <leqant and 55}1‘1{3{«3 conslruel
!(Jmnrhrn ';n a mﬂdu’c. The ,"-:'ﬁ{.'f_il'{l,f,'{g {_"mr_,endt‘agc,
are ﬂjiﬂr?zwbd' wndh ~the Case Conclrael -

Aormal of dhe cage Conshraed 15

or rnuH?:pfs.

Cate (Cﬂ-’)ﬁrm?onj
Reft 1 Sf-n‘frmml ¥

pefo 1 Sdalement2

ﬁff.% i slalements;

defautt Sldlernentd |
endcase
:'?f -the evaluated vale malches re/[r, ,;!a’ffmcnf'f

L) g ra
and be Gpulater otiels —he block; Else gtprmrfn I:
I fxacufal and tp

writh rffz and pm case uf a magd}r o/ cilement 2

T4 nene ﬂ(The 1{[.', m(:.'., eben. malches —the Value m! “he
elFIEESIDn ' ~the Cfe'frfﬂtil‘. S[ﬁlfﬂ]g‘ﬂ{'. 'rg gz}feu[fgd1.) .sé'affemen{' or a
menks T ereaded & and only i “here {5 an enacl
leh between -the ¢valuabed rwf:ucssfﬂfj and -fhe

Tj c'x(rm,fa#

Gﬂrnpﬂﬂ‘c!
on -

!)‘H_— b bn - ma

fpi’f”}'cd' rrfr, Iﬁ{.a, edcim
"fi?r anv

515’cmfr}5 dcﬂ’ned for f’xc[u#ﬁn :

—the bn?fr) - end Cuns{rurf-
There Can he cmfy one dedault stalement o defautl
y cwohere S Ahe Case etatemnent.

block . b G@n apped an{ it
One Can have muiﬁfﬂzﬂ .erﬂgna! (hmé)rna'fmqr Vel ties

)
-Sf‘-'f‘;m”d "Fﬂr 4he Same _Siafé"mfﬂl -fnr E_)‘[t"fﬂltl'ﬂl") {ormmak

SFde'?'a all of hem.

f'lr *”)4’ mﬂifht'jf pne tan hGV{. Fa EJ(.E'EK ﬂﬂp
The f_‘ufﬂrk Shﬂu’hf a/af:u:ﬂr mr”‘nn,

www.Jntufastupdates.com scmeduit conscanner 12

module decz _ 4 beb(o,7)! @)
Oulrul (3i0]0,
?nrul [rio]7;
1{’1 [z:0]p;
ufmm(s @ s buui‘?o

Case (V)
a'boo!o = 4'hoj
2'boi: o = 4"}
2' b0 0 = 4'ha}
2'bil 10 = 4'ha]
clefault; f:-e_?qo
$ df’splcui (Merror”); 0 = 4'hoy
erd

endcase
endmodule

module deca _abehi [o,‘:f);
Ou.llau.l: [3i0] 0]
fﬂ}"ul' Crio]7 -
req (3.!0]0;
always @ 4
hecfto Case ()

o'boos 0l0]= I'bi :
2'bor: of] = 1'brj
o' bio: ol2]=1'bl}
o' b1t 0B8] = J'bz;
»'box, o'bix, 2'bxo, 2'bx1t0 = 4'boooo | default:
hetfln
$ d?s.rlmi[" exor") ; 0 = 4 hej
end
end tase
endmodale

module alubeh ()8, n,b,-r);
Dulrlmt[a'.o] c; C]u.l[')ul: S

www.Jntufastupdates.com semeuiscamscanner 13

-

‘iﬂPllL La,uU))Yy AN
t:nrnl fl',u]-ri fL-,J - '1
\Cfl] rr:i:UJf' :l nlll"th\]‘;‘;

: ij(]atn C ase (h

@(a ov b or)

'booic = aldb;

o'boty ¢ = a-h;

2'brot ¢ = a&bj
o' bit! ¢ = alb)
Fndcase end
endrmodule .
Casex and Casez al bmnfh?ﬂ‘]
The Case gi—n{rmm{‘ E:H”“éﬂ‘n fr?’bu‘l’j -fo ~1he

kit f’; Jhe (ai€ {?Pﬁ’-‘l‘;mﬂ con
a

e here ‘.Uf;? 151 I has fwo UﬂrTﬂn[S cohere S0ME
| bmnfhﬁ?ﬂ? edeofye, W8S megsfu can be seleclivel Areaked
i ol he "hits of the Case ‘Cﬂ{?”’ n N

as don't Cares - —hal 0, Tonored. (ase allows 7

ng" f'fmmf[f--" alsp Can he e

d’ ,!'n /:[nrc

I“fle'ﬂft'-d a1 c:f[m"f Care)
;0;' 7. (dex Aveds X or Zz a8 QA Aon't Care .

medule. Fr‘f_ encla,b);
| thlPuE [1i0]0,
'i’npuf EHILY req (1100 ;
afu.:'a:ufs @ (b) Casez ()

4'brzzti O = 2'hoo;
‘ 4'hzrtor @ = 2'bot;
'l 4'bzioo: @ = 2'bw;
4'biosota =2'bil] end case
erdmedule .
L SIMUOLATION

Vertlog has o be an ?r:-’]crcn”Y Pamlhl m(msf:]?
‘ {a"?”“?f' The Hacl +hat all e elements of a q":?ﬂﬂ/
Cireurt —funchion and Snleracl (.::n-n'ﬂumu{';, 1o slquclure -}hm‘uyﬁ

The Jp/(muﬁ}g} .
T e ——

www.Jntufastupdates.com st censcamer 14

T —— A — i - s

A J 3 i . / ¥l "}‘ ’ . . i
.ﬁmul’n’/mn ~lne | .I.}nm"n’mn ' (nrmr{ el tn Seemlalon ":-j

/
- &_ I 'l] L

The Srnullor unellons with C’-mu’ﬂf'ﬂn e ﬂfl't"f"i’"?

¢

i diserele 5?7-5-

el |d f‘ }n
= M even .‘}irr_ar.rfn 107, _c;ff!‘) e 'numbr‘; of atiue

"VEIJ»"‘. art SF']U?H-"FH!J'V t‘"ﬂH:H g“F-,

- The Simualalor rnafq-fn?n.l, A an everd quelle -
Called ~the " 5[-;::!7-/:'}.:! Event d?“f”f' Z wilh on .-:‘ltlrfit h{;?mmf
al il ﬁ‘P' “The 'ft‘[: osl averd (o -the aclive .ffvrr}fn'f c-/ 1he
queue Tg Aaken up Loy eneadion acat

-7 —!_hf.‘ ﬂr./ﬁ!e FU’{'!]E Can Lf.- rrf an U{'ﬂ‘f‘l'}f- 'f!ﬂr:f. or
‘:'*"-"{”ﬂf’%” 'fffpe . The mm{m"ﬂ'-n evenl Can e or ovaludion r."/
Yo r?abfes.J values an neh,n e r&m@:m / st ’;?,_J,gh‘f},i ~the Tum‘-‘:

c‘.lﬂd Wdﬂﬂﬂ?f’n? ?{ (},‘In_ﬁﬁ?ﬂlm ~the Uf;ﬁ‘g"r -F.IJ'Fn‘!'.

- .Ami .:L‘pdaf;}l? can call for A jubif?utnf' evalilive

ard vice Uerta,
- onl after gH ke achve evenls {n « Aime -5;",." are
vcaled, Ave Shmaldlon aduocss e e est Lier slep.

&'”"Pf’ ’EE") c»f ~the Lequen(! J ij*mm"-m abeve ol ooy lime
slep »5?'?#;}4 the parallel nalure of fhe 4pL. A number of
athve evenls can be Prfgenf: Sor eneedion ol ant Srrul :grr,
itne -Siff’ﬂ oll may Ufe -for " aMtenlion . Amongsl these, an
event _5/Jff?ffi'ﬂ'l at #o Atime T Scheduled fpy erenhitn gt -Ahe

erd
%f anp Sl ~else consTRUCTS
The # (ensbruel ehecks a ‘sr;eu%ﬁr Condrlon ard

Aecides a;rm}%ﬁ based en lhe recult . The elruclure of a
jfo]menf Er/ n modufﬁ with an ':! stdlement . Mer ertecthion
m.gﬁznmm{ 1, -he (mrfﬂ*:%ﬂ Sjofr?ﬁ:*d Ts checked - F Gl Fo cal j,‘} o
ausanment 2, exewded; T act, i s Sﬁff}:fed'. TIn efther (e
+he ' erccbivn Conliniows ~lhroug b m.s'??ﬂmméa, assigrment 4 eke,
Execution of ﬂu?}ﬂ-"ﬂfﬂfl alone % c{gr;encfenf en -lhe Cbndﬂfi;n,

www.Jntufastupdates.com seesin cmseanner 15

’
-”]f lt‘sa f‘/ S['fj”{‘ﬂ."{' remony,
(N . y
asg.'f'?nmm{ I} l! (' (onc n‘:m)
njﬁ?nmenf 23 (?.isr? nm-'nfﬁ '

a&sT?nmrni 94

tlse pf -the t,'-{* ,;Jg(Construcl

m;‘;’?nmenf ¥
5f ¢ Condihion) }x?’in /
Alernalive 1
airanmentz ;
m.s'r'r]r)rnml'a,' end ele
bctf?n I atternalive. 2.
(s gnment 4
nss‘}’jnﬂmt 5, ond
as:.'r?n menl 6

a1 . o v|{ ¢ & [y
-hf{ff' the r—:nrmﬁ?ﬂn ﬁf auf nmmfi', ;/ ~the fprﬁ:!lﬂn LS anrf‘ﬂ'a
oy Sci‘ﬁsfrded_; m’fr’.ma'f:ﬁel % Jg!fﬂLUTn!? and gg?nmmil anc/
ﬂ&s?ann-’niﬁ are f‘Ht‘f_u.{‘('O‘- —055'? nment k and nm?nmui'g are
tkSpped and exewrhon /",mra(fs with edsignment é

.S ’PP(vy ‘1 o ECJ] {2 rd
fp“.f Ahe (ﬂn(’:ﬁmo 3 rm! ja‘tlrsfra_ ,M!?;Wn a
nMent 4- Grmf m.ﬂ?nmmﬁﬁ' are

2] Pl o
iianments are sKipped and ausi
a ? n m i {ﬂ?‘fb Cl.‘g_f??f}mfn{é '

eneculed. Then ey ccthon Continuow
module demun ()b, 8); Ouipuf [3:0]a) EJ'}'J[)uf'b;
‘r’npul[r:nlaj re7[3;aj':15 :;l:uays@.(b org)

'b.c.?fln il (2==2'boo) bg?m al2'bo] = b}

al3i1] = 3 b2z
end else
” (5==2"hot) be??f}
a[2'd1] = b;

=] o : - B —— e e e — O —— i —

www.Jntufastupdates.com seesin cmseanner 16

i — — — il

P

o 0 o
end else r, (5== ?'-J””U] h"?'” o
al2'd>] - ,),

[al2], a1, alol} = '-&'h?.?.?.;
end else bnrﬁn u[n'da] =
al2i0]= 3‘?)221',
end
ord
erd modu le

” Cnunlt"l tlgu‘ﬁTI ‘If else ‘i‘l, rnuc,ulc

Counks| (o, aK)y, oul-rut- [1:0]a; ﬂ':nrul
Ik "ﬂh:o]q, Ny '?rﬁﬁcd hechn
n=¢'hoa; a - ’E;‘ boovoooo |
446 n=ghoa)
end nlm_m,s @ Lpos.aclrlr, clk) I’aF“IIO
¢ witte (" fme = i 0d " & dime))
il (a==n) a=g'hoe, elae
_ a=-a+ bt}
end endmodule
agﬁ'?n - dm,ssﬂ']n CONSIRUCT

0
The aJ;ﬁ;n — cleassrgn
ity o behavioural block .

f..'msf:ruch allow Corlinupus

ﬂjsfajjnmmfﬁ
ﬂfi‘.ﬂﬂfiﬁr@ Cpugedﬁa cik) a = b;
1] way 0/ excalion , al +the Pm?/}’ua edcre at’ﬂuk 1he
'\u"! ¢ { b TG ajsfyned -fv Vm?nﬂ;fe, Q, f‘lﬂd a remaoatny fr;ﬂzan
alu
al -thot value unfil —ff-;.fj next Fm?a’rue Cdﬁe or clk . C}lﬂn?t’s en b
ff‘* +he tfnlr'ruﬂf are lgnﬂred.
Consider he block a'wmfs@tfosed?e. k)
mﬂ]n c=d;

~ttere. al 1he Fo.s:‘ﬁue ¢ cae p/ ck, € 15 HJS?cIn{’(J +he Value
or d Sn a (oofmuous Manner; .Subm:?t!fni chnn?ei thd are :
Cﬁ“’f”j vellecled as Ci‘mn?.c tn varfable ¢; The ass?«;nwnf heve 1

www.Jntufastupdates.com seesin cmseanner 17

aﬁ{fn ‘fl" A ('T"F:frf -f'fl!‘[-hfrl"fl} ({:nrlrtlr'gm -fl! C 'f.'nrn({‘ ﬁv)
established al +the /um:'fﬁht prf:}.u‘ p/ ¢k
rrs's'r:Jnr - d;

g 0
Condider an enharnced Verstop of “the above block as

-Mu'm/s Br?ﬂr)
@ (Pc_scd?e
cIK) ms-"t’?nc =d;
@ Cne c:dryc
CIK) m,;s.r‘%;n ¢t
f’.rﬁ.
Jhe above block J?n?fi?s Jeo achivihies ;

¢
ek, ¢ 15 ﬂssiﬂynpaf -the Value c/d' tn a

— Al Ahe Pns?:’rqrﬁ eqf?c Fa
- Conlinuous vnanner,

= M the -fnffau"?n; m’?n'mfﬂ edge o/ CIK, -the (‘aﬁ[ﬁnutxﬁ aufnmvn{
do ¢ 55 removed ' Subgequent ' changes o d are not pffﬂfd ‘on o
I j L Ts ay -ihuu‘r,:b c ?5 dfcffr?cnfy d:'écﬂnnfrfcc! ffmm d.

In sherk) QH.T?D allews A variable or a nael ch,—;;n?-e.
N —the Sensitivi st Ao mandale a Subsequent CoAlmuouws
asstgnment coithin . de ass‘ﬂ]n Aerminales —the a;;??nmfﬂ{ dene ’fhmzyh
-~the GH‘F?D - L‘?ajcd’ Sza_!cm,gnf ‘
medule derux itas, ar,a2, b, 6); oudpuk
a0y 102,03 5 Snput b; ‘Tn(:uirr:n}.s; reg ap Q119 Q35
alwai}s@) 1f (6==2"boo) CUS?T}
{ao)ai,a2 Az} = [b, 3[07.7”
eloe) [s::::.‘bmja*?-s?f)f‘l
| i g
{ﬂn;ﬂh Gilni] :ILI JDZ, b; 2 b?-})
elee 'if (5==2'bib) as..e‘f?n
{QGlﬂ];ullaa} = {jibz |b|l bz"l];
else :P (s==2'bu)
2! ! '
"15517” {ﬂupﬂuﬂujﬂ.a}:{aﬂ?ljba; f
endmodule . £

www.Jntufastupdates.com seesin cmseanner 18

| D—ﬂ:fr’ 'HC'.P ‘Hl-’ﬂ”';f? mr':'jn < r'-"'-"”“r?” Conelrucle module @
Cf”ﬂj!,l]ﬂ (9, 9b, Ar, ck, "h;[“')m C"Ha‘.ff“{ 7, 9b, rnpuf-‘da Clk,

Pr; H‘y 7 nﬁuyn
qb =7)
elear and :ftprJ mir?ﬂ 7: t'hi;
~the & Jchlt nows behaviour
el a!uﬂny;@ C'PGH ﬂr?*—’i clk) 9 = d|
(clocked) Value alsiynfd H‘i?

rudtpp ff’f or {”) b.»'Jm f(tl’rJ asnl?n? = ! hu,

.::n:fmddu!c.
erm{ CoNSTRUCT

The ft’p“ﬂ Conslruct §s wwed {p repe
g cqﬂcd ntfrnbzr o/ fimes. The 7unnfrfy

b abed 1o a number . s $000 o the
rr;;:; ;r ;{];‘fe::::n% % entoundred, « % cvalule d'é. ~the Jip::?:{
blecle e enecubed " a” 4imes - ﬂ/ ot opaluates o ©)

-the blocK % not exewled.
.Sﬂ-rur'fum ﬂl- fal rE[)ﬂﬂt Lloek .

ri

rf[?t‘ﬂl') bcr]m

a.-'.ﬁ-'l nment |}

t_ﬂd 1l '; A"d
aL Cﬂr} be a

BIDLK a -
Q1Pr¢"55='ﬂr} evalu

nss'f?nrm'nﬁ 2!
- LN
end

P

A module 4o Sluslrdle -the wie of -ihe re/:lraf Construet
module -tial_gb; reg [#0]m(15: i:l}J mt'c'?err_, req
etk) always bffrr} h?/J-:’flf (8) bt‘?!f’]

@ (neﬂrrf ¢ k)
M= 1¥8, T=i1;
e’ﬂd reFrn! (6)

L)

@ (ne f“"]f ciK) r::—a,
'jrhsf'?{‘h’:f “t=pd, o vd, mi] = fﬂd,

WWW . J nthaStU pd ateS . CO m Scanned with CamScanner 1 9

he ran

$ Ume, 5, m[07)) end

end
Toltlal buvm cik = 1'boii= 0}
= 0 $ EI'f-F,
aFma75 A1z clK = -CIK;
endmodule
Hor loop

p .
e -for !m*i: ' Ueufc:? fs 7:1?1'.:’, SSmilar o the Aar f‘ga;s wnC

-1 he —fn:maf @f +he ,fm’ oop 4

for (m;f?nmmir; ex[)mrs?m; ms%nmmLﬁ) jfcﬂ'emgn{-j
Y
Tt hew ~four (o‘m!'.s;, -the Se?ucnca ol exewdivn Y ai Soltows ;
t Qxaul'a a.s&trd?nmfn{f
91 Pualuaie egf)tféﬁ?ﬂﬂ
3. Tf the i"xFrEES?Dn eveluales o -the fruc stale E:);('nrry

out gldlement . 13':3 o sleps-
“+ J“JI E*ﬁFI’fJSFUO evaliates —o the false slale(o), exit ~the

frmp :

6. Facenke ms.?vnm:-nlz- (fv 4o ;Le:/oz.

rf7ES 0j ¢, reg coj fqu?-b] §, tn!-ﬂ?ﬂ")
alwas e fpa;ed?e en) bi?rn clo] = Cin
v (V=0; <=3 T =740 bc’?rn
e (], 5{:35 - {al’1 +b0r1 4 (1)}
end co- <[81;
erd

#nd module .

www.Jntufastupdates.com scmeduit conscanner 20

“1E disable CONSIROCT 2

)
b”‘.*t'lc Car be STMGI';'_}‘-HS whn‘c cne has '11:‘ LEr-?':f". |

out of & block or f:rofl- the dicahle cldlement derminakes 4

" named block or Aask . Conlrol Vs {raptfered o 1he stalerrert
I e o i
lr'mm-:‘r‘h'ét'fpfv 'fnffmm?n? ~the f}fﬂfk_ - &*nr‘fn’mnaf rfermmafm Ej a "c-{;
| (’Fn{'emtl:!' .Scru?g?n ebe... are “ffpnmmf (onlexls 7o -funfkﬂﬂc:”y -
S?}Tlrt}dr +p e, Of"r‘.'f‘ﬂ ~the d:::jnb(:ﬂn 15 Cnrrﬁ*;:f ouk '{‘;f:r? mT;E=rni
_ "Ih(" biﬂlk ?{Sfff- 7!].1 f{:gnbfe: {ﬂﬂf-{'ruré ?5 Aftfﬂt—[rcﬂﬂ”y SHﬂJQT Lo |

: -the break ?n C OR a'.ff m::-duf! “Io Cfgmgn_;{ya"fe —the UAE g:,!

+the disable Construct.

! mod ule Ur_.jnffe (b, &, en); Er’npuﬁfa:ﬂja; ‘f'nf;ui en‘;gul],ué b; rf? i
‘ b Tnteqer 1;

! afuja?;@ Cfnscrd?c_ en)

| hr?b:n ' a,ﬁﬂga'f.-_ b=1'"bo;

| Aor (P=0; F<=3; V=141) 3} (ali1 =t'b1)
| herﬁn h=1'bl § disable UR_VEfe.

! 2nd

.e'nr{
f_'m'jlI rnodu fe_

The disable slalement has 4o have a Hock Sdenbifier (-ﬁ??pd‘ /o
U n -his ffs/vde W Affers from " break U .

(Once enmun@red, 2! {Erm:’na&,g Eﬂﬁcullﬂﬂﬂ a){- +the
block | -the fgﬁutﬂﬁ}? 5{"::?;!'11'):'{1!:‘- Lu?#)fn 1he. b!ﬂfk, are noé

enecited .

“?ypﬁ:a!h, it Can be wed 4o handle e:f};r%m 4
I'rs{,ufmfy .:'ujf’ynr*d aclinfles Hor exam/;/g, fﬂ#f’”ﬂf?h hold , resek,

ete,

WWW . J nthaStu pd ates . CO m Scanned with CamScanner 2 1

‘ WHLE Loop

1‘ “The foreal -lor “Ihe while frmp Vs q}mu‘ﬂ e

“_'rhwl!"

0
(expression) Gldlemenl
| - o 7 luated "?/" v Arue, -he
i i'hc bmfmn f'-.cfmﬁfsluﬂ 15 CUaluatea , o] [
elilement tor block ¢ lalements) f5 execuled and A
fu‘afuafcd and chcr.‘\‘cd :Pf the f"“/?rpss?tm sEUnr_'ua}r; -fﬂ'/ﬂhﬂ;*rhp_

oo ?'» Aetminabed and he -—fm’fnmrrjn‘? Stalement 1s 4aken
4

ot evewdhon - Il dhe enpression evalvales 4o -hue, excartion
0 o
ﬂﬁ stalement e rf/)raf'e({- This ~the fanp 15 -fermmalec{ and

btolbet hioken mnfy ol the er/:rm?m ovaluales o false.

resSsion

To aenamfr& a Fufse of definile efidlh .

module while [b,n, en, clk); %’nrnf [#:i0]n; fﬂpu{:
(K, en; oulpuk b, ra?['%':ajn; rerJ b;
alum:j; @ (:/?Ujed'?e_ en) bp;ﬁn a=n;
while o) be?fn h=1'b1; @ (posedge CIK)

a=a-bl;
(’ﬂd b: flbﬂ
end Snilal
erd maodule .

- Forever Loop

PCFM.JEH Exe.:ugrﬂn DF o bt’ﬂck j’n"n an pnd.’g;s manner
%o best done with -the '){OI%’EF fﬂﬂlD-
h'}affuh’. {0 gmem’h: fa | cloek uml}e./orm ustfng e
Horever Construck
module cLK; req clk, enj always @ C/mg.ori'?e en)

—ﬁwmutr + 2
cii = vtk

| LUNE
Lfﬂp: Ir.:r1.|' IJ*‘?TH CLK = fbﬂ; £N= ,rrba }' -1 clk =1 b J

Aa en= (bt j 4130 ¢ Slop;

WWW . J nthaStu pd ateS . Co m Scanned with CamScanner 22

| end §aflial $ monthor (" K= Zb,t= Jod, cn= 7

q‘nd!‘nﬂdltk

. PARALLEL Y0mP BLOCKS

|

CiK, _5t-“1mcf cn)j',

H
!

‘ where all the ﬂéjf‘nmf'ﬂlﬁ are Cavtied oul G}r}uurf?dh{- ne
‘ a rfﬂfk-jﬂf‘n block within o be?é:n-md block or \ite vessa.

~
(23
-

- - [
| Al the Pwrcdumi ascranments EU,-,fhfq a &E?to _end

blotk are exceubed .5'67!&'."1{;;1!'!'?. jgﬂq block Ts an alternale Gne

Carn e

25 1fal

| hecﬂn

a= 0, #H |

#H2 =2,

| #3 a=3; Ha $ slop; end

‘ thilial)

| & monitor (a=%od,

t=70d; a, ${ime);
end module

4
/| Emuldon resatts

Cl:.f,. -+ =1

= {5_7_2]-—{_-:-'5

| Eis n_._—_gl'i'iﬁ

module Ik -—j’rﬂ- aj ?ﬂf{’?rr i

module fK_jn_b; ?qgfffr o
TﬂT-’“TGJ

Hfork

o =o0; dF]

=)

2 a=2

#=3 a=3; Hq$slop ; ?ﬂfn

il 4 moniloy {"a = fod,
+=ved' a, $lime);
end medule

/] £Tmuf&f:‘im results

£ a=-0, t=0
:H—ﬂ:fl{"-‘f

#" ﬂ:if '{-7—2

'-'f!‘ 0:5,-{-:5_

WWW . J ntufastu pd ates . Co m Scanned with CamScanner

23

|
?__mcc-ﬂ release ConSTRUCT @

] 3 Y 1 _Jo
when dfbuwmt? O ({FS:?H with a mumber of Sostankil,
—ons, @ne way hbe cluek with an unrx/:ecfﬂd hehaviowr ¢ a

fﬂrﬂwzed area- "i'rmtf]ﬂy fhe Pﬂ”l:’r r."/ ?’na’ﬂﬁ’dua!‘ CSonels and
d{*/)u??ﬁ'?? Jhe destgn rﬂmf prove to be 1oo dediows or dVfffautt. o

Sueh Cases .E'ci.&f)c':f' blocks may be Ysolaled, tested, and f?ﬁuwfci
ard slaliis guo arile establsed . The —force - r‘é‘f;‘ﬂjfz Construel- is Jor
Sueh a localized ;}.nfn'ﬁun Jor a limited)wrmd.
sforce a = .'Ibﬂ;
Afprees -the varable o fo Hake The value o.

l Aorce b= c&d;
L o —the Val e C'f:-f’a?nrd f:*t'(e.uah.:crfan?

[Jorces Ahe variable
| the exflrras%n c &d .

I The Aorce - release Construck % Smilar 1o -he assign-

‘ Cf(fasscrﬂgn - Censkrnret “The lader Conslruct % “far Condilional aufynmrn[

h a dﬁ‘r’%ﬁ dl‘-‘-‘*‘fﬁp"ﬁ’“- “he Aorce— release Construct fs Hor " shot
" awignmenls F:ﬂ a Adeyb-=hendh, S':/m‘f'w’s'fs +ools i tl ret

| Hme
SUFFGH‘ the force — release Con strucls .
-7 The "&'Jr.fe-rp_fm;a_ (onstruct s e?uaff? valid for -I'}Ef*:fl/['.‘ﬂ
varables . The ek type Variables reval to

Variables and reg - {?'pe
rrhefr viormal alees €0
forced yemans untit another M_(r?qmgn{ s the reg.

refecse - with re;.‘-'iy/ne :!m?ﬂbff-ﬁ the Value

s the Vafable, oo whith Ahe values are Horced during deshog,
| must be {Jm}vcrfy dug_‘/ﬂ('n(gcf.

o qe "
T he Alustration above, gach ufm?abfti as -flnrfvrf one ot a
-the Tfr’ﬂ.l{,m?rgn Szyufn.ii_‘ {1:111’

-;,Fgmj adtenlion on -the ostrhle (e qﬂ +the Construct . Tp

i Pfﬂf”’"}‘fi c‘frvfffffﬂl" U’ﬂrﬁﬂdb!'f.‘: can bf’-A"Jff’-ﬂ' —FC'?E‘”)E‘F bé‘fure +he
|

|

—>

| -
|rﬁme. { wal done C’”’Y {v irmpﬂfv

SF“SI? dcbu? Ceguente thérr release oo Can be -fn?t“?’ﬁfr-

www.Jntufastupdates.com st censcamer 24

0f Tﬁc modale and ks Hest berch o ®usbrale -the use of D
Sforce — velease Construck

module or_-lr_ vl la,b,¢) ; ?n[;.u!-b, &3 ﬁufpui‘a s wire. a,b, ¢}
n.ss?yn a=blcy ‘Tnihal fjt‘?{?r\
= $d%pfﬂ7{“d.‘§[>fm/ yhime = ped, b=7.b,c=%b, a=1b]
$4ime | b,c,a);
6 HJorce b=1'bi;
4 dr‘é.ﬂmi {”dr'\;f:fatf s fime = fiod , b=7b, €= nb,
a=1b"y $4ime, bic,a);

4+ 6 release b

S dfjﬁ[’{"?f” dfﬁp"mg' 'hme=Yed, b=/b,c=/b,a=1,b)
3Hme b,cia); end

end module .

EvENT
The ta{mmd cvent allows an abetract cvent 1‘: be
Aeclared . The event 6 ot a data —Fr/p»: wiih an?, .Sfacu/ﬁ: values ,
OL % not a Variable (H??) or a nel - EE Stanihie acban?rz that,
Can be wed a: a‘f:fﬁfﬂr to Communicale ™ beliween mpdules or

4o _g.jnchmrﬁ;:e evenls :fn d?’ffercnﬂf moduwles .

L]
.4_'_‘;,_-(}{ chﬂn?ﬂ

L

a } LDﬂl-’J!-

: .- : CI]{lan
aﬂmmf; A Cl'rm?-g,
[I

Tn -the Course ol exeawlion of an afways block, -lhe
event e ~tv 7.:'&9:{ . The c?frm“far S'F"Tﬁ’ 1¢5 Ihe Tr}?‘]dn?'}?q S'tshm?urm'f
-y v another “adwity can be starled " tn the medule by ~the event

www.Jntufastupdates.com seesin cmseanner 25

Cfmnr]E The mﬂwm!; @ Cchange) C’Jfadf dcﬁ‘lffw}s -H}ﬂ . @
—he eyent Cmnyf can be wed £n ,O_M”p medules Ao)_',V proper
C{prr,’crmtrﬂ?; unth Sueh tage an acr"r‘u”y n a module Can' be
S:Inthmn}:zcd Jo an evenl ' another medule. .
The EUIH“-’ fansfﬂrt[' ?S uwc H.!f'fr.ff, Ej[)ffTCrH tn -the

:;‘.:‘ur’y g-fa:?fs o} a desian. t Can be ted o establich -The

Sunchonall ol « dm?r]') of -he éﬂhwfcurnf fevel; Tt allows

_ Carnmun cation arﬂnnyﬁf‘ dilfercol Sslanbaled modules without

aé.s-ntfn{cd Lr':nput"l ¢l pu-}]auk.

A module Ho ushale he cvenl Constract + - Sertal
dela yeccwer
module vee Canddy, aK); gjgr}f;uf- (8:1]a, Tnfmf ddi, <tk

veql8i1] -
? A Tl"r!r‘yﬂ f,j}} curent [)Lf;_ -Iu{; a’lUﬂlfS —fnr CJ.'EG;]{:.ZH,

G=Jt)
b@?ﬁ: #o jfr 0j repeat (s) (@ Cnizc‘f LK) br.?c'yfn

" i W=t

oj}] = ddyj

=/ CI'I[.’SFIICIL, (“b =767 al1) ond
Ho-> buf__-fuJ) end

@n_’fmud:tfa :

WWW.J nthaStu pdateS_Com Scanned with CamScanner 26

UNIT-1V DATAFLOW LEVEL AND SWITCH LEVEL MODELLING: Introduction, continuous

assignment structures, delays and continuous assignments, assignment to vectors, basic transistor

switches, CMOS switch, Bidirectional gates and time delays with switch primitives, instantiations
with strengths and delays, strength contention with trireg nets

4.1 Introduction

Gate level design description makes use of the gate primitives available in Verilog. These
are repeatedly and judiciously instantiated to achieve the full design description. Digital
designers familiar with the basic logic gates and SSI / MSI circuits can describe the desired
target circuit in terms of them on paper and proceed with the design description based on them.
This was the approach followed in the last two chapters; it is practical for comparatively smaller
designs — say those involving tens of gates. One can define modules in terms of primitives
involving tens of gates and instantiate them in macro-modules. This increases the complexity of
designs that can be handled by one order. Beyond that the gate level design description becomes
too complicated to be practical.

Data flow level description of a digital circuit is at a higher level. It makes the circuit
description more compact as compared to design through gate primitives. We have a number of
operands and operations representing the simulations directly or indirectly. The operations are
carried out on the operand(s) in singles or in combinations. The results are assigned to nets. The
operand-operation-assignments representing data flow are carried out repeatedly to complete the
design description. Further, these can be combined judiciously with the gate instantiations
wherever necessary. With such combinations, design description of a comprehensive nature can
be accommodated.

4.2 CONTINUOUS ASSIGNMENT STRUCTURES

A continuous assignment is the most basic statement in dataflow modeling, used to drive a
value onto a net. This assignment replaces gates in the description of the circuit and describes the
circuit at a higher level of abstraction. The assignment statement starts with the keyword assign.
The syntax of an assign statement is as follows.
continuous_assign ::= assign [drive_strength] [delay3] list_of_net_assignments ;

A simple two input AND gate in data flow format has the form
assign c=a && b;

Here “assign” is the keyword carrying out the assignment operation. This type of assignment is called a
continuous assignment.

a and b are operands — typically single-bit logic variables.
“&&" is a logic operator. It does the bit-wise AND operation on the two operands a and b.

is an assignment activity carried out.

cis a net representing the signal which is the result of the assignment.

In general, an operand can be of any one of the following types:

v A constant number [including real].

v Net of a scalar or vector type including part of a vector.

v’ Register variable of a scalar or vector type including part of a vector.
v" Memory element.

A call to a function that returns any of the above. The function itself can be a user-defined or of a
system type .

There are other types of operators as well . All types of combinational circuits can be
modeled using continuous assignments. One need not necessarily resort to instantiation of gate
primitives.

An AND gate module which uses the above assignment is shown in Figure 4.1. The test
bench for the same is shown in Figure 4.2, and the waveforms of nets a, b, and c obtained with
the simulation are shown in Figure 4.3. [The simulation software used has the facility to capture
the waveforms of selected signals in the “run” phase; this has been invoked to get the waveforms
in Figure 4.3. No separate $monitor command is included in the test bench of Figure 4.2. The
same approach has been adopted with many of the test benches.

module andgdf(c,a,b);
output c;
input a,b;
wire c;
assign ¢ = a&&b;
endmodule
fig 4.1 :A module with an AND gate at the data flow level.

//TESTBENCH
module tst_andgdf;
reg a,b;
wire c;
initial
begin
a=1'b0; b=1b0; #4 a=1'b1;
#4b=1bl;#4a=1b0; #4 b =1'b0; #4 a = 1'b1;
end
andgdf g1(c,a,b);
initial #20 Sstop;
endmodule
fig 4.2 A test bench for the above module

Figd.3 :Waveforms of nets a, b, and c obtained with the simulation of the module

_}w

An A-O-| gate circuit.
Fig4.4:

Multiple assignments can be carried out through a direct extension of the structure adopted in the
above case. Consider the AOI gate in Figure 4.4. A few patterns of the assignments for the
circuit are given in Figure 4.5 to Figure 4.7.

v' assign e = a&&b, f = c&&d, gl = e|f, g = ~gl;
Figure 4.5 A data flow level assighment statement to realize the A-O-l gate in Figure
v’ assighe=a &b, f=c&d; assign gl = e|f, g="gl;
Figure 4.6 Another set of data flow level assignment statements to realize the A-O-I gate in Figure 4.4.

assigne=a &b;
assignf=c&d;
assigngl=elf;
assign g = ~gl;

Figure 4.7 Yet another set of data flow level assighment statements to realize the A-O-l gate in Figure
4.4

Observations:

v' The semicolon terminates an assignment statement. Commas separate different assignments
in an assignment statement.

v' “]” is the bit-wise OR operator and “~” the bit-wise negation operator in Verilog.

v" All the quantities in the left-hand side of a continuous assignment have to be of net type. Thus
e, f, g, and gl have to be declared as nets.

v" All the operations in an assignment are evaluated whenever any of the operands in the
assignment changes value. Further, all the assignments are carried out concurrently. Hence the
order of the assignments or the statements is immaterial.

v The right-hand sides of assignment statements can be nets, regs, or function calls. Here a, b, c,
and d can be nets or regs. All other variables have to be nets.

The module for the A-O-I gate of Figure 4.4 is given in Figure 4.8 — it is formed around the assignment
statement of Figure 4.5. The same can be tested through a test bench.

4.2.1 Assignment and Net Declarations

The assignment statement can be combined with the net declaration itself making the assignment
implicit in the net declaration itself. Thus the two statements

wire c;

assignc=a &b;
can be combined as

wirec=a &b;

The above simplification cannot be carried over to multiple declarations. With this provison, the module
of Figure 4.8 can be modified as shown in Figure 4.9.

In the modules of Figures 4.8 and 4.9, a, b, ¢, and d are declared as input and g as output. These would
be taken as nets if there are no separate declarations concerning their types.

However, the intermediate quantities — e, f, and gl1— should be declared as wire. Synthesized version of
the A-O-l circuit is shown in Figure 4.10.

module aoi2(g,a,b,c,d);

output g;

input a,b,c,d;

wire e,f,gl,g;

assighne=a &&Db,f=c&&d, gl =¢||f, g="g1l;
endmodule

Figure 4.8 A compact description of the AOI module at the data flow level.

module aoi3(g,a,b,c,d);
output g;

input a,b,c,d;

wire g;

wire e =a &&b;

wire f = c && d;
wiregl=e||f;

assign g =~gi;
endmodule

Figure 4.9 Alternate design module to realize the A-O-I gate in Figure 4.4.

x17

in[0] _ |

° ::1 out inmﬁs\out in o out

a>AL in[O]);’/ g
s 3]

a :> ?n ? [out

b [in[1] /

Figure 5.10 Synthesized circuit of the A-O-I gate module of Figure 5.9.

4.2.2 Continuous Assignments and Strengths

A net to which a continuous assignment is being made can be assigned strengths for its logic
levels. The procedure is akin to the strength allocation to the outputs of primitives. The AOI gate of
Figure 4.9 is modified with strength allocations to the output and is shown in Figure 4.11. The
assignment to g can be combined with the wire declaration into a single statement as

wire (pulll, strong0)g = ~g1;

As mentioned earlier, one can have only one assignment in the statement here. In a bigger design, g in
Figure 4.11 can be assigned to other expressions or primitives also. Any resulting contention in the
output values will be resolved on the lines.

module aoi4 (g, a, b, c, d);
output g;

inputa, b, c, d;

wire g;

wire e = a &&b;

wire f = c &&d;

wiregl=e || f;
assign (pulll, strong0)g = ~g1;
endmodule

Figure 4.11 The module of Figure 5.9 modified with strength allocation to the output.

4.3 DELAYS AND CONTINUOUS ASSIGNMENTS

Delays can be incorporated at the data flow level in different ways .

the net c. The following may be noted with respect to the waveforms:

v

AN

<

achangesat0ns, 2 ns, 5ns, 8 ns, 9 ns, 12 ns and 13 ns;

b changes at 0 ns, 2 ns, 5 ns, 8 ns and 13 ns.

All these trigger changes to c.

In every case change to ¢ comes into effect with a time delay of 2 time steps — that

is, at the 2nd, 4th, 7th, 8th, 10th, 11th, 14th and 15th ns, respectively.

Whenever ¢ changes, its new value is decided by the values of a and b at that

instant of time. In effect, ¢ changes at 2nd, 4th and 7th ns only.

wirec, a, b;

assign#2c=a & b;

Figure 4.12 lllustration of combining delays with assignments.

T L1

.

[1

| I

FIG 4.13 Waveforms of signals a, b, and c for the design segment of Figure 5.12

Consider the
combination of statements in Figure 4.12. The assignment takes effect with a time delay of 2
time steps. If a or b changes in value, the program waits for 2 time steps, computes the value of ¢
based on the values of a and b at the time of computation, and assigns it to c. In the interim
period, a or b may change further, but ¢ changes and takes the new value only 2 time steps after
the change in a or b initiates it. Typical waveforms for a, b, and c are shown in Figure 4.13. Note
that the changes in a and b of duration less than 2 time steps are ignored vis-a-vis assignment to

The program segment in Figure 4.14 also gives the same output as shown in Figure 4.13. If the
time delay is in the net and not in the assignment proper, its effect is not any different. Consider the
program segment in Figure 4.15. Here the changes in the values of d are computed immediately
following those in a and b. The assignment takes effect immediately. The delay in the net c causes a
delay of 2 time steps in the assignment to c. Such a delay is not present for d. Typical waveforms for the
program segment are shown in Figure 4.15.

Note the following:

v

ANERNERN

AN

achangesat2ns,5ns,8ns,9ns,12 nsand 13 ns;

b changes at 2 ns, 5 ns, 8 ns and 13 ns.

All these trigger changes to c and d also.

In every case, change to ¢ comes into effect with a time delay of 2 time steps that is, in
effect, c changes at 2nd, 4th and 7th ns only.

Whenever c changes, its new value is decided by the values of a and b at that instant of
time.

In every case, changes to d come into effect immediately.

wire a, b;

wire#2c=a & b;

fig 4.14 :Alternate description for the program segment of Figure 5.10.

wire a, b, d;
wire #2 c;
assignc=a &b;

assignd=a &b;

Figure 4.15 lllustration of combining delays with assignments.

P TLT

[

A
L-r
) [T

Figure 4.16 Waveforms of Signalsa,b,c,anddfor the design segment of Figure 5.15.

4.4 ASSIGNMENT TO VECTORS

The continuous assignments are equally applicable to vectors. A single statement can describe
operations involving vectors wherever possible. This is illustrated in the adder module in Figure 4.17,
which adds two 8-bit numbers. Here it is assumed that the sum is also of 8 bits.

However to account for the possibility of a carry bit being generated in the course of the
addition process, it is desirable to increase the vector size of c by one bit.

4.4.1 Concatenation of Vectors

v/ One can concatenate vectors, scalars, and part vectors to form other vectors.
The concatenated vector is enclosed within braces.

Commas separate the components —scalars, vectors, and part vectors.

If a and b are 8- and 4-bit wide vectors, respectively and cis a scalar

ANERNERN

{a, b, c}

stands for a concatenated vector of 13 bits width. The vector components are formed in the order
shown — c is the least significant bit and a[7] the most significant bit and the other bits are in between in
the order specified. The concatenation can be with selected segments of vectors also.

For example,
{a(7:4), b(2:0)}

represents a 7-bit vector formed by combining the 4 most significant bits of vector a with the 3 least
significant bits of vector b.

The size of each operand within the braces has to be specified fully to form the concatenated vector.
Hence unsized constant numbers cannot be used as operands here.

Example 5.1 Eight-Bit Adder

Figure 4.18 shows the design description of an 8-bit adder, where the output vector is formed
directly by concatenation.

The adder takes a carry input and gives out a carry output. The adder module here can form the
“seed” adder block in a multi-byte adder chain.

module add_8(a,b,c);
input[7:0]a,b;
output[7:0]c;
assignc=a+b;
endmodule

Figure 4.17 An adder module at data flow level where the nets are vectors.

module add_8_c(c,cco,a,b,cci);
input[7:0]a,b;

output[7:0]c;

input cci;

output cco;

assign {cco,c} = (a + b + cci);
endmodule

Figure 4.18 A complete 8-bit adder module at data flow level.

When it is necessary to replicate vectors, scalars, etc., to form other vectors, the same can be
arrived at in a compact manner using the repetition multiplier again through concatenation. Thus,

{2{p}} represents the concatenated vector {p, p}

{2{p}, q} represents the concatenated vector {p, p, q}.
The two statements

assign GND=supply0;

p={8{GND}}; together ground the 8 bits of the vector p.

Concatenation operation can be nested to form bigger vectors when component combinations are
repeated. For example,

{a, 3{2{b, c}, d}}
is equivalent to the vector

fa,b,c,b,c,d,b,c,b,c,d,b,c,b,cd}

ALU

Figure 4.20 shows an ALU module. It is built around a single executable statement present as a
continuous assignment. A test bench for the ALU is also shown in the figure.

The synthesized circuit is shown in Figure 4.21. Results of running the test bench are shown in

Figure 4.22. Some of the combinational circuit operations required are realized inside the “modgen’
blocks of the FPGA used.

The nature of the ALU description in the module decides the translation into circuit. Contrast
this with the ALU considered at the gate level of design where each functional block is instantiated
separately and the selected set of outputs steered to the final output.

Each such instantiated module translates into a separate circuit block. Their outputs are mux’ed
into the final output vector.

There is a one-to-one correspondence between the elements of the design description and their
respective realizations

module alu_df1 (d, co, a, b, f,cci); //a SIMPLE ALU FOR ILLUSTRATION PURPOSES

output [3:0] d;
output co;
wire[3:0]d;
wire co;
input cci;
input[3:0]a, b;
input [1:0]f; //f is a two-bit function select input;
assign {co,d}=(f==2"b00)?(a+b+cci):((f==2"b01)?(a-b) :((f==2"b10)? {1’bz,a”b}:{1’bz,~a}));

/*co is the carry bit in case of addition; it is the borrow bit in case of subtraction. In the other two
cases, co is not required. Hence it is assigned z value.*/

endmodule

//test-bench

module tst_aludfl;
reg [3:0]a,b;
reg[1:0] f;
reg cci;
wire[3:0]d;
wire co;
alu_df1 aa(d,co,a,b,f,cci);
initial
begin
cci= 1'b0; f = 2’b00; a = 4’b0;
b =4'h0;
end
always
begin

#2 cci = 1'b0; f = 2’b00;a = 4’h1; b = 4’h0; #2 cci = 1'b1;f = 2’b00; a = 4’h8;b = 4’hf; #2 cci = 1'b1;f =
2'b01;a = 4'h2;b = 4’h1; #2 cci = 1’b0;f = 2’b01;a = 4’h3;b = 4’h7; #2 cci = 1’b1;f = 2'b10;a = 4’'h3;b = 4’h3;
#2 cci = 1’b1;f = 2’b11;a = 4’hf;b = 4’hc;

end
initial Smonitor(Stime, “ cci = %b , a= %b ,b = %b , f = %b ,d =%b ,co= %b “,cci ,a,b,f,d,co);
initial #30 Sstop;

endmodule

Figure 4.20 A 4-bit 4-function ALU and a test bench for the same.

5 =
e ! '“""'{‘j"‘_"'.

o L iy 1

a3o|_y

.m':: ki35 _“[:::-A

[E]
ok ._'“_" ;m_-gl. o Incag
1] I, -
I o= modgern = _1 1 = 14

.
odl > w o=
o 1=

U
i E1E S

175 LF;: Co==

E
2
"E

2
o

Tk

Enlby

Figure 4.21 Synthesized circuit of the ALU in Example 4.18.

#0cci=0,a=0000,b=0000,f=00,d=0000,co=0
#2cci=0,a=0001,b=0000,f=00,d=0001,co=0
#4cci=1,a=1000,b=1111,f=00,d =1000 ,co=1
#5cci=1,a=0010,b=0001,f=01,d =0001 ,co=0

#8cci=0,a=0011,b=0111,f=01,d =1100,,co= 1 #10cci=1, a= 0011 ,b = 0011 ,f = 10,d =0000 ,co=z
#12 cci=1,a=1111,b=1100 ,f=11 ,d =0000 ,co=z #14 cci =0, a= 0001 ,b = 0000 ,f = 00 ,d =0001 ,co=
0 #15 cci =1, a= 1000 ,b = 1111 ,f = 00 ,d =1000 ,co= 1 #18 cci = 1, a= 0010 ,b = 0001 ,f = 01 ,d =0001
,co= 0 #20 cci = 0, a= 0011 ,b = 0111 ,f = 01 ,d =1100 ,co= 1 #22 cci = 1, a= 0011 ,b = 0011 ,f = 10 ,d
=0000 ,co=z #24 cci=1, a= 1111 ,b = 1100 ,f = 11 ,d =0000 ,co= z #25 cci = 0, a= 0001 ,b = 0000 ,f = 00
,d =0001 ,co=0#28 cci=1, a=1000,b =1111 ,f =00 ,d =1000 ,co=1

Figure 4.22 Results of running the test bench for the ALU module in Figure 4.20

basic transistor switches, CMOS switch, Bidirectional gates and time delays with switch primitives,
instantiations with strengths and delays, strength contention with trireg nets

Introduction

In today’s environment the MOS transistor is the basic element around which a VLSI is
built. Designers familiar with logic gates and their configurations at the circuit level may choose
to do their designs using MOS transistors. Verilog has the provision to do the design description
at the switch level using such MOS transistors.

Switch level modeling forms the basic level of modeling digital circuits. The switches
are available as primitives in Verilog; they are central to design description at this level. Basic
gates can be defined in terms of such switches. By repeated and successive instantiation of such
switches, more involved circuits can be modeled — on the same lines as was done with the gate
level primitives.

BASIC TRANSISTOR SWITCHES
Consider an NMOS transistor of the depletion type. When used in a digital circuit, it can be in
one of three modes:
v" VG < VS where VG and VS are the gate and source voltages with respect to the drain:
The transistor is OFF and offers very high impedance across the source and the drain. It
is in the z state.

v' VG = VS: The transistor is in the active region. It presents a resistance between the
source and the drain. The value depends on the technology. Such a resistive state of the
transistor can be modeled in Verilog. A transistor in this mode can be represented as a
resistance in Verilog — as pulll or pull0 depending on whether the drain is connected to
supplyl or source is connected to supplyO.

v' VG > VS: The transistor is fully turned on. It presents very low resistance between the
source and drain.

An enhanced-mode NMOS transistor also has the above three modes of operation.

v It is OFF when VG = VS. It is moderately ON or in the active region when VG is slightly
greater than VS, representing a resistive (pulll or pull0) mode of operation. When VG is
sufficiently greater than VS, the transistor is in the on state representing very low
resistance. Similar modes are possible for the PMOS transistor also.

Basic Switch Primitive

Different switch primitives are available in Verilog.
Consider an nmos switch. A typical instantiation has the
form

-— —&
n out

nmos (out, in, control);
v" nmos — a keyword — represents an NMOS transistor control
functioning as a switch.
v The switch has three terminals — in, out, and
control.

Figure 1 An NMOS switch with terminals

e When the control input is at 1 (high) state, the switch is on. It connects the input
lead to the output side and offers zero impedance.

e When the control input is low, the switch is OFF and output is left floating (z state).

e [f the control is in the z or the x state, output may take corresponding values.

The keyword pmos represents a PMOS transistor functioning as a switch.
The PMOS switch has three terminals (see Figure 2). Out
.
A typical instantiation of the switch has the form
pmos (out, in, control);

e When the control is at 1 (high) state, the switch is off. Qutput control
is left floating. fig. 2 Pmos with 3-terminals
e When control is at O (low) state, the switch is on, input is connected to output, and output is

at the same state as input.

Resistive Switches
nmos and pmos represent switches of low impedance in the on-state. rnmos and rpmos represent
the resistive counterparts of these respectively. Typical instantiations have the form

rnmos (outputl, inputl, controll);

rpmos (output2, input2, control2);

e The rnmos if the controll input is at 1 (high) state, the switch is ON and functions as a
definite resistance. It connects inputl to outputl through a resistance. When controll is at
the 0 (low) state, the switch is OFF and leaves output1 floating.

e The rpmos switch is ON when control2 is at O (low) state. It inserts a definite resistance
between the input and the output signals but retains the signal value.

rpmos and rnmos are resistive switches, they reduce the signal strength when in the on state. The
reduced strength is mostly one level below the original strength.

The rpmos and rnmos switches function as unidirectional switches; the signal flow is from the input
to the output side.

pullup and pulldown

A MOS transistor functions as a resistive element when in the active state. Realization of
resistance in this form takes less silicon area in the IC as compared to a resistance realized directly.
pullup and pulldown represent such resistive elements.

A typical instantiation here has the form
pullup (x);
Here the net x is pulled up to the supplyl through a resistance. Similarly, the instantiation
pulldown (y);

pulls y down to the supplyO level through a resistance. The pullup and pulldown primitives can be
used as loads for switches or to connect the unused input ports to VCC or GND, respectively. They
can also form loads of switches in logic circuits.

The default strengths for pullup and pulldown are pulll and pullO respectively. One can also specify
strength values for the respective nets. For example,

pullup (strongl) (x)

specifies a resistive pullup of net x to supplyl. One can also assign names to the pullup and
pulldown primitives. Thus

pullup (strongl) rs(x)

represents an instantiation of pullup designated rs having strength strongl.

CMOS SWITCH

A CMOS switch is formed by connecting a PMOS and an NMOS switch in parallel — the input
leads are connected on the one side and the output leads are connected together on the other side.
Figure 10.15 shows the switch so formed. It has two control inputs:

e N_control turns ON the NMOS transistor and keeps it ON when it is in the 1 state.

e P_control turns ON the PMOS transistor and keeps it ON when it is in the O state.
o
m .—E —a out
[

Figure 10.15 A CMIOS switch formed by connscting 2 PMOS transistor and an NMOS
transistor m parallsl.

The CMOS switch is instantiated as shown below.
cmos csw (out, in, N_control, P_control);

Significance of the different terms is as follows:

cmos: The keyword for the switch instantiation

csw: Name assigned to the switch in the instantiation

out: Name assigned to the output variable in the instantiation

in: Name assigned to the input variable in the instantiation

N_control: Name assigned to the control variable of the NMOS transistor in the instantiation

P_control: Name assigned to the control variable of the PMQOS transistor in the instantiation

module cmos(out,in,nctr,pctr);
input in,nctr,pctr;
output out;
nmos gn(out,in,nctr);
pmos(out,in,pctr);
endmodule

BI-DIRECTIONAL GATES

Verilog has a set of primitives for bi-directional switches as well. They connect the nets on either
side when ON and isolate them when OFF. The signal flow can be in either direction. None of the
continuous-type assignments at higher levels dealt with so far has a functionality equivalent to the bi-
directional gates. There are six types of bi-directional gates.

e tran rtran

e tranifl rtanifl

e tranif0 rtranif0
tran and rtran

The tran gate is a bi-directional gate of two ports. When instantiated, it connects the two ports directly.
Thus the instantiation

tran (s1, s2);
connects the signal lines s1 and s2. Either line can be input, inout or output.

rtran is the resistive counterpart of tran.

tranifl and rtranifl

tranifl is a bi-directional switch turned ON/OFF through a control line. It is in the ON-state when
the control signal is at 1 (high) state. When the control line is at state 0 (low), the switch is in the OFF
state. A typical instantiation has the form

tranifl (s1, s2, ¢);

Here c is the control line. If c=1, s1 and s2 are connected and signal transmission can be in either
direction.

rtranifl is the resistive counterpart of tranifl. It is instantiated in an identical manner.
tranif0 and rtranif0

tranif0 and rtranifO are again bi-directional switches. The switch is OFF if the control line is in the 1 (high)
state, and it is ON when the control line is in the 0 (low) state. A typical instantiation has the form

tranif0 (s1, s2, c);

With the above instantiation, if c = 0, s1 and s2 are connected and signal transmission can be in either

direction. If c = 1, the switch is OFF and s1 and s2 are isolated from each other.

rtranif0 is the resistive counterpart of tranifO.

Type of Typical Condition tobe | Remarks
Bi-directional | instantiation | ON
switch
tran(a,b) | Always ON(if | Acts essentially as a buffer
mstantiated)
2 port rtran(a b); | -do- Acts essentially as a buffer with
reduction in the strength of the signal
tranifl(a, | ONifc=1 Acts as a buffer if ON. Otherwise
b, ¢): provides 1solation
tranifO(a, | ONifc=0 -do-
b,)
3 port rtranifl |[ONifc=1 Acts as a buffer if ON. Otherwise
(a,b,c) provides isolation; signal strength on
the output side is lower than that on
the input side
rtranif0 ONifc=0 ~do -
(a, b, ¢);

TIME DELAYS WITH SWITCH PRIMITIVES

Propagation delays can be specified for switch primitives on the same lines as was done with the
gate primitives in Chapter 5. For example, an NMOS switch instantiated as

nmos g1 (out, in, ctrl);
has no delay associated with it. The instantiation
nmos (delayl) g2 (out, in, ctrl);
has delayl as the delay for the output to rise, fall, and turn OFF. The instantiation
nmos (delay_r, delay_f) g3 (out, in, ctrl);

has delay_r as the rise-time for the output. delay_f is the fall-time for the output. The turn-off time is
zero. The instantiation

nmos (delay_r, delay_f, delay_o) g4 (out, in, ctrl);

has delay_r as the rise-time for the output. delay_f is the fall-time for the output delay_o is the time to
turn OFF when the control signal ctrl goes from 0 to 1. Delays can be assigned to the other uni-
directional gates (rcmos, pmos, rpmos, cmos, and rcmos) in a similar manner. Bi-directional switches do
not delay transmission — their rise- and fall-times are zero. They can have only turn-on and turn-off
delays associated with them. tran has no delay associated with it.

tranifl (delay_r, delay_f) g5 (out, in, ctrl);

represents an instantiation of the controlled bi-directional switch. When control changes from 0 to 1,
the switch turns on with a delay of delay_r. When control changes from 1 to 0, the switch turns off with
a delay of delay_f.

transifl (delay0) g2 (out, in, ctrl);

represents an instantiation with delay0 as the delay for the switch to turn on when control changes from
0 to 1, with the same delay for it to turn off when control changes from 1 to 0. When a delay value is not
specified in an instantiation, the turn-on and turn-off are ideal that is, instantaneous. Delay values
similar to the above illustrations can be associated with rtranifl, tranifO, and rtranifO as well.

INSTANTIATIONS WITH STRENGTHS AND DELAYS

In the most general form of instantiation, strength values and delay values can be combined. For
example, the instantiation

nmos (strongl, strong0) (delay_r, delay_f, delay_o) gg (s1, s2, ctrl) ;
means the following:
e It has strength strong0 when in the low state and strength stronglwhen in the high state.
e When output changes state from low to high, it has a delay time of delay_r.
o When the output changes state from high to low, it has a delay time of delay_f.
e When output turns-off it has a turn-off delay time of delay _o.

rnmos, pmos, and rpmos switches too can be instantiated in the general form in the same manner. The
general instantiation for the bi-directional gates too can be done similarly.

STRENGTH CONTENTION WITH TRIREG NETS :

e nets declared as trireg can have capacitive storage. Such storage can be assigned one of three
strengths — large, medium, or small.

e Driving such a net from different sources can lead to contention ,the relative strength levels of the
sources also have a say in the signal level taken by the net.

¢l c2

4

Sourcel al swl a2 sw2 a3l

An Example circuit to illustrate strength contention in switch primitives

module demo 1;
trireg(large)a3; trireg(small)a2; wire al; reg cl,c2,b;
bufistrong1,strong0) sourcel(al,b);
tranifl swl(a2,al cl), sw2(a3,a2,¢c2);
initial begin
Sdisplay("t\tal\tc1\ta2\tc2\ta3");
#0 {cl,c2,b}=3'b111; #1 {cl.c2,b}=3'b011; #1 {cl,c2,b}=3b001;
#1 1cl,c2,b}1=3'b000; #1 {cl,c2,b}=3'b100; #1 {cl,c2,b}=3b000;
#1 {cl,c2,b}=3'b010; #1 {cl,c2,b}=3'b000; #1 {cl,c2,b}=3b100;
#1 {cl,c2,b}=3'b000; #1 {cl,c2,b}=3'b010; #1 {cl,c2,b}=3b000;
#1 {cl,c2.b}=3'b001; #1 {cl.c2,b}=3'b101; #1 {cl.c2,b}=3Dbl11;
#1 Sstop;
end
mnitial Smonitor("%0d\t%b\t%b't%b'\t%b\t%b" Stime,al ,c1,a2,c2.a3);
endmodule

)
0
1
H
J
{"
b
i
fq“

= 1 33!
— S =
c—o [: —
e—= [} : —
e—= [}-—= . _
s [J}=- - ——
e—= 1= o -
) ' —
-—> 3= : ——
e—= [_}-= - :
c—re [_}-= : —
e . : N —
c—a= [} . s -

Fig. 172 Changes in signal values at different times

:;
]
7]

QOO0 ~O0O0O0 OO0 ™™

#0O
#1
#2
#3

#S

#7
#8

#10
#11

#12
#13
#14

=0 0000000 -
---co-uoo--ﬂ)
~COO=000mO000 =m0
———-——-uu-—--&)

Simulation Results

RAM cell :

The figure shows a basic ram cell with facilities for writing data, storing data, and reading data. When
switch sw2 is on, gb - the output of inverter gl - forms the input to the inverter g2 and vice versa. The
gl-g2 combination functions as a latch and freezes the last state entry before SW2 turns on. The step-
by-step function of the cell is as follows: ® When WSb (write/store) is high, switch SW1 is ON, and switch
SW2 OFF. With Sw1 on, input Din is connected to the input of gate gl and remains so connected.
When WSb goes low, din is isolated, since SW1 is OFF. But SW2 is ON and the data remains latched in
the latch formed by gl-g2. In other words the data Din is stored in the RAM cell formed by gl-g2.
When RD (Read) goes active (=1), the latched state is available as output Do. Reading is normally done
when the latch is in the stored state.

D1
5w
n —
)
WR
swr —eDo
RD [

Fig. 167 A Dynamic RAM Cell

module raml{do.din,wr.rd);

output do; input din,wr,rd;

wire gb.q;

tri do;

scw swwig.din,wr), swr{do.qg,rd):
not (pulll,pulld) nl{gb.q). n2({g.gb);
endmodule

module scw(out.in,n_ctr);
output out; input in,n_ctr;
wire p_cir;

assign p_ctr =~n_ctr;

cmos swlout,inn_ctr,p_ctr);
endmodule

Synthesis

Synthesis converts Verilog (or other HDL) descriptions to an implementation using technology-
specific primitives

Verilog Synthesis circuit
HDL Tool netlist

*Verilog and VHDL started out as simulation languages, but soon programs were written to automatically
convert Verilog code in to low-level circuit descriptions (netlists).

v For FPGAs: LUTSs, flip-flops, and RAM blocks—
v For ASICs: standard cell gate and flip-flop libraries, and memory blocks

Synthesis tool used to

e detect and eliminate redundant logic

e detect combinational feedback loops

o exploit don't-care conditions ¢ detect unused states

e detect and collapse equivalent states , make state assignments

o synthesize optimal, multilevel realizations of logic subject to constraints on area and/or speed
physical technology.

Need of Logic Synthesis

1.Automatically manages many details of the design process:

*Fewer bugs

*Improves productivity
2.Abstracts the design data (HDL description) from any particular implementation technology

*Designs can be re-synthesized targeting different chip technologies; E.g.: first implement in
FPGA then later in ASIC3.
3.In some cases, leads to a more optimal design than could be achieved by manual means (e.g.: logic
optimization)
4.1f synthesis is not available may lead to less than optimal designs in some cases.

Example :

modnle foo (a,b,s0,31,f);
inpmt [3:0] a:
inpunt [3:0] b:
input =s0,=s1;
outpunt [3:0] £
reg f:
alway= @ (a or b or =0 or =1)
if ({1s0 && s1 || s0)) f=a; else f=b;

endmodule —
+ Should expand if—el%ébbﬁ wide multiplexer (a, b, ¥ are 4-bit vectors) and
optimize/minimize the contral logic:

]

s0
s1 :&

Supported Verilog Constructs:

o Net types: wire, tri, supplyl, supply0;

e register types: reg, integer, time (64bit reg); arrays of reg

e Continuous assignments

e Gate primitive and module instantiations

o always blocks, user tasks, user functions—inputs, outputs, and in outs to a module

e Alloperators (+, -, *, /, %, <, >, <=, >=,==, I=, === ==, &&, ||, |, ~, & ~&, |, ~|*~, ~\ *, <<,
> 7, {}L{{}})

e Procedural statements: if-else-if,case, casex, casez, for, repeat, while, forever, begin, end, fork,
join

e Procedural assignments: blocking assignments =, non blocking assignments <= (Note: <= cannot
be mixed with = for the same register).

e Compiler directives: "define, ifdef, “else, “endif, “include, undef:

e Integer ranges and parameter ranges

e Local declarations to begin-end block

e Variable indexing of bit vectors on the left and right sides of assign

Un Supported Verilog Constructs:

Generate error and halt synthesis Simply ignored

+ Met types: trireg, wor, Trior, wand, + Delay, delay control, and drive
triand, Tri0, tril, and charge strength; strength

* re:l_:_;is T_e.r‘ T?Pf?': r‘e:_]l + Scalared, vectored

. B!Jrl_*r—m gmdwec_‘rmnﬂl and « Tnitial block
bidirectional switches, and pull-up,]] _
pull-down « Compiler directives (except for

+ Procedural statements: assign ?&f'-"e*) ifd‘%f' “else, gndif,
(different from the “continuous include, and " undef, which are
assignment”), deassign, wait supported)

+ Mamed events and event triggers = Calls to system tasks and system

» UDPs (user defined primitives) and functions (they are only for
specify blocks simulation)

+« force, release, and hierarchical net
names (for simulation only)

Synthesis - Combinational Logic
Combination logic function can be expressed as:

logic_output(t) = f(logic_inputs(t))

Combinational

Logic logic_outputs(t)

logic_inputs(t)

Avoid technology dependent modeling; i.e. implement functionality, not timing.
The combinational logic must not have feedback.

Specify the output of a combinational behavior for all possible cases of its inputs.
Logic that is not combinational will be synthesized as sequential

SRR NN

Combination logic can be generated using

e Netlist of primitives: AND, OR, etc.

e User-defined primitive

e Continuous assignments

e Level-sensitive cyclic behavior

e Procedural continuous assignment (assign ... deassign)

Net list of structured primitives

v Synthesis tools further optimize a gate netlist specified in terms of Verilog primitives

module or_nand_1 (enable, x1, x2, x3, X4, ¥); ., .5 x3 x4

: 1 e

input enable, x1, X2, x3, X4; | 1

outputy; w2 _}-,.

wire wil, w2, w3; w3 [

or (wl, x1, x2); enable =

or (W2, x3, x4): Pre-synthesis

cai22_a
or (w3, x3, x4); // redundant x1
_ E nand2i_a

nand (y, wl, w2, w3, enable); ” j |,3_)0_}_

endmodule enable = I

Post-synthesis

Synthesis: Continuous Assignment

Continuous assignment statements are synthesizable and they will produce

1 wl
(1) combinational logic, (2) latch, (3) three-state output =
enable

3 w3
module or_nand (y, enable, x1, X2, x3, x4); =

Pre-svnthesis
output y;

oai?? a

input enable, X1, X2, X3, x4; 1
. iﬁ- nand2i_a
assign y = ~(enable & (x1 | x2) & (x3 | x4)); o ¥
enable s

endmodule .
Post-synthesis

Synthesis: Level-Sensitive Cyclic Behavior

A level-sensitive cyclic behavior will synthesize to combinational logic if it assigns a
value to each output for every possible value of its inputs.

* The event control expression of the behavior must be sensitive to every input
* Every path of the activity flow must assign value to every output.

The data words are identical if all of their bits match in each position Otherwise, the most
significant bit at which the words differ determines their relative magnitude

module comparator (a gt b a It b a eq b, a b); // Alternative algorithm
parameter size=2

output agtbalthbaeqbh
input [size: 1] ah

reg agthalthbaeqhb
integer k

1

Synthesis Result:
always @ (a or b) begin: compare_loop

B[2:1] s
for (.= size;k > 0 k= k-1 begin D
if (a[k] 1= b[K]) begin t :DD_' 2.eq b
a_gt_b=alk] 1 -
a lt_b=~alk] ’}
aeqb=0 I+ _
disable compare_loop; _D L, .
end I a2:1] ; It |
end Il for loop ' >: ,_'_
agth=0; _
alth=0; D Y
a_eq_h : 1I : — a_gt_b
end /I compare_loop T
endmodule

Synthesis of Combinational Logic — Functions
Example:
module or_nand_4 (enable, x1, X2, x3, x4, y);
input enable, x1, x2, x3, x4;
output y;
assign y = or_nand(enable, x1, x2, x3, x4);
function or_nand;
input enable, x1, x2, x3, x4;
begin
or_nand = ~(enable & (X1 | x2) & (x3 | x4));
end
endfunction
endmodule
Synthesis of Combinational Logic Tasks :
Example:
module or_nand_5 (enable, x1, x2, x3, x4, y);
input enable, x1, x2, x3, x4;

output y;
regy,
always @ (enable or x1 or x2 or x3 or x4)
or_nand (enable, x1, x2, X3c, x4);
task or_nand;
input enable, x1, x2, x3, x4;
output y;
begin
y = !(enable & (x1 | x2) & (x3 | x4));
end
endtask
endmodule

Synthesis of Multiplexors
if .. else Statement

module mux_4bits (y, a, b, c, d, sel);
input[3:0] a, b, c, d;
input[1:0] sel
output[3:0] y;
reg [3:0] y;

always @ (a b c d sel)
if (sel==0)y = a; else
if (sel == 1)y = b; else
if (sel == 2) y = c; else
if (sel==3)y = d;
else y = 4'bx;
endmodule

Unwanted Latches

al[3:0]
b[3:0]
c[3:0]
d[3:0]

y[3:0]

sel[1:0]

O Unintentional latches generally result from incomplete case statement or conditional

branch

Example: case statement

always @ (sel_a or sel_b or data_a or data_b)

case ({sel_a, sel_b})
2'010: y_out = data_a;
2'b01: y out = data_b;

endcase

Synthesis result;

data bs

sel_a._%_rD
Ly out
el ot Do

Latch —
data a,

The latch is enabled by the "event or" of the cases under which assignment is explicitly made.
e.g. ({sel_a, sel_b} == 2'b10) or ({sel_a, sel_b} == 2'b01)

O Example: if .. else statement Synthesis result:

always @ (sel_aor sel b or data_a or data_b)

if ({sel_a, sel b} ==2’b10)

else if ({sel a, sel b} ==2°b01) sel_bhm

data b

sel HFD:—FD

e y_out

Lateh |—

y_out = data_a;

y_out = data_b; data a

Synthesis of Priority Structures:

A case statement implicitly attaches higher priority to the first item that it decodes than to
the last one

If the case items are mutually exclusive the synthesis tool will treat them as though they
had equal priority and will synthesize a mux rather than a priority structure.

Even when the list of case items is not mutually exclusive a synthesis tool might allow
the user to direct that they be treated without priority (e.g., Synopsys parallel_case
directive). This would be useful if only one case item could be selected at a time in
actual operation.

An if statement implies higher priority to the first branch than to the remaining branches.
If branching is mutually exclusive, synthesis produces a mux structure

Otherwise create a priority structure

When the branching of a conditional (if) is not mutually exclusive, or when the branches of a
case statement are not mutually exclusive, the synthesis tool will create a priority structure.

module mux_4pri (y, a, b, ¢, d, sel_a, sel_b, sel_c);
input a, b, ¢, d, sel_a, sel_b, sel c;

output y;
regy,
always @ (sel_a or sel borsel coraorborcord)
begin
if (sel_ a==1)y=a;else sel_am
if (sel_b==0)y =Db; else sel_bm

if (sel_ c==1)y=c;else

y=d; sel_c -—l

end

endmodule L2

dm—

(o E— mux_2

bm [’7
am

mus_Z—m

Exploiting Don't-Care Conditions

e Anassignment to x in a case or an if statement will be treated as a don't care condition in
synthesis

e If a conditional operator assigns the value z to the right-hand side expression of a
continuous assignment in a level-sensitive behavior, the statementwill synthesize to a
three-state device driven by combinational logic

module alu_with_z1 (alu_out, data_a, data_b, enable, opcode);
input [2:0] opcode:;
input [3:0] data_ a, data b;
input enable;
output alu_out N scalar for illustration
reg [3: 0] alu_req;

assign alu_out = (enable == 1) ? alu_reg : 4'bz;

always @ (opcode or data_a or data_b)
case (opcode)
3'b001: alu_reg = data_a | data_b;
J'b010: alu_reg = data_a ™ data b;
I'b110: alu_reg = ~data_b;
default: alu_reg = 4'b0;// alu_with_z2 has default: alu_reg = 4'bx;
endcase
endmodule

Synthesis Result: alu_with_z1

opcode[2:0] DC —:DDO—
data_a[3:0] —D—L

data_b[3:0] E

enable

alu_out

Synthesis Result: alu_with_z2 (Exploit don't-cares)

data b[3:0] = alu_out
opcode[2:0]]

data_a[3:0]

enable . r—[>0*

UDP :USER DEFINED PRIMITIVES
primitive boolean_eqs (y, a, b, c);

output y;
input a b c
table
/ Inputs Output
/f a b C y
0 1 ? {
0 0 ? 0;
1 ? 1 i
1 ? 0 0,
endtable
endprimitive Synthesis result
et 3)
= L
as-—9 =3
'

SYNTHSIS OF COMBINATIONAL AND SEQUENTIAL LOGIC USING
VERILOG: Synthesis of combinational logic: Net list of structured
primitives, a set of continuous assignment statements and level

sensitive cyclic behavior with examples, Synthesis of priority

structures, Exploiting logic don’t care conditions. Synthesis of
sequential logic with latches: Accidental synthesis of latches and

Intentional synthesis of latches, Synthesis of sequential logic

with flip-flops, Synthesis of explicit state machines.

Sequential components: their output values are computed using both the present and past
input values.In other words, their outputs depend on the sequence of input values that
have occurred over a period of time.This dependence on the past input values requires the
presence of memory elements.The values stored in memory elements define the state of a
sequential component.Since memory is finite, therefore, the sequence size must always be
finite, which means that the sequential logiccan contain only a finite number of states.So
sequential circuits are sometimes called finite-state machines.Sequential circuits can be a

asynchronous or synchronous. Asynchronous sequential circuits change their state and
output values whenever a change in input values occurs. Synchronous sequential circuits
change their states and output values at fixed points of time, which are specified by the
rising or falling edge of a free-running clock signal

o A feedback-free netlist of combinational primitives will synthesize into latch-free
combinational logic.

e A continuous assignment with feedback in a conditional operator will synthesize into a
latch.

e A set of feedback-free continuous assignments will synthesize into latch-free
combinational logic.

+ Example: D flip-flop with synchronous set/reset:

module dff(q, 4, clk, set, rst); « "@ (posedge clk)" key to flip-
input d, clk, set, rst; 'HCIP gEHEY‘ﬂ‘I’iGH

ontpont g
reg q: + Note in this case, priority
always @ (posedge clk) I .. . +
if (reset) ogic is appropriate
q <= 0; + For Xilinx Virtex FPGAs, the
elzse if (set) . . .
g <= 1; tool infers a native flip-flop
zlf,: o - No extra logic needed for
endmodule set/reset
We prefer synchronous set/reset, o
but how would you specify —d ql—
asynchronous preset/clear? ck—

FINITE STATE MACHINE :

modnle FSM1 (clk,rst, enable, data in, data out):;

inpunt <clk, rst, enable;

input data in; N .

output data out: * Style guidelines (some of
these are to get the right
/% Defined state encoding; .
this style preferred over ‘'defines+*,/ FESUI"" ﬂﬂd some JUST fmﬂ

parameter default=2'bxx; FEﬂdGb”ify)

parameter idle=2'b00;

parameter read=2 "h[]]_;_ - MUST hﬂ'l.l'E. PESET

P“amd‘:t“ “zit3=2 'bl10; - Use separate always blocks

reg a out;] A]

reg [1:0] state, next state; for sequential and combination
logic parts

A% always block for segquential logic+*/) .
always @ (posedge clk) Represent states with defined

if (rst) state <= idle; labels or enumerated types
elze state <= next state;

/* always block for CL */ » Use CASE statement inan
alway= @ (=tate or enable or data in) .
begin - always to implement next
case (state) state and output logic
/* For each state def output and next *;f
idle : begin * Always use default case and
data_out = 1'b0; assert the state variable
if (enable) \
next state = read: and GI.I"'PLI'I' to 'bx:
1 t state = idle: e
STSe nexk _state = 1die * Avoids implied latches
end
read : begin .. end + Allows use of don't cares
write : begin .. end leading to simplified logic
defanlt : begin + "FSM compiler” within synthesis
next state = default: tool can re-encode your states;
data_out = 1'bx; Process is controlled by using a
end synthesis attribute (passed ina
endcase
end comment).
endmodnle

* Details in Synplify quide

Accidental Synthesis of Latches
A Verilog description of combinational logic must assign value to the outputs for all
possible values of the inputs otherwise latches may occur.

module ord_behav (y, x_in);

parameter word_length = 4,

output y;

input [word length - 1: 0] x_in;

reg Y,

integer k: [/ Eliminated in synthesis

always @ x_in
begin: check for 1
y=0;
for (k = 0; k <= word_length -1; k = k+1)
if (x_in[k] == 1) begin
y=1,
disable check for_1;
end
end
endmodule

module ord behav latch (y, x_in);

parameter word_length = 4;

output ¥,
input [word_length - 1: 0] x_in;
reg Y.
integer K;

always @ (x_in[3:1]) // incomplete event control expression
begin: check_for_1

y=0;
for (k = 0; k <= word_length -1; k = k+1)
if (x_in[k] ==1)
begin
y=1,;
disable check_for_1;
end
end
endmodule
x_In[3]
»W.'I—H\
1 xmm J A |

En
*_n[]
oD a
¥y
%_In[3] Y
) in
xin o R]

— . * 1]
x_in

EXAPMLE 2:

module mux_latch (y_out, sel_a, sel b, data_a, data_b);

output y_out;
input sel a, sel b, data_a, data_b;
reg y_out;

always @ (sel_a or sel_b ordata_a or data_b)
case ({sel_a, sel _b})
2'p10: y_out = data_a;
2'n001: y_out = data_b;
endcase
endmodule

data b |_

sel_a -—-—u—Doi B
g En | y_out
Latch —wa
SN
sel_b I—n—|>o— J

data_a r

Intentional Synthesis of Latches

An if statement in a level-sensitive behavior will synthesize to a latch if the statement
assigns value to a register variable in some, but not all, branches, i.e., the statement is
incomplete.

module latch_if2 (data_out, data_in, latch_enable);
output [3: 0] data_out;
input [3: 0] data_in;
input latch_enable;
reg [3: 0] data_out;

always @ (latch_enable or data_in)

if (latch_enable) data_out = data_in; // Incompletely specified
endmodule

data_in[3.0]

data_out[3:0]

pu

e

Esdpuﬂ
L == latmat_a
t“""ﬂ
latch_snable Iatrngh_n
. ._I-

Example - 8:3 Priority Encoder

module priority (Data, Code, valid_data);
input [7:0] Data;
output [2:0] Code;
output valid_data;
reg [2:0] Code;
assign valid_data = |Data; !/ reduction or

always @ (Data)
casex (Data)
8'b1xxxxxxx :Code =7;
8b01xxxxxx :Code =6;
8'b001xxxxx :Code = 5;
8b0001xxxx :Code = 4;
8'b00001xxx :Code = 3;
8'b000001xx :Code = 2;
8'b0000001x :Code = 1;
8'b00000001 :Code =0;

always @ (Data)
begin
if (Data[7]) Code = 7; else

if (Data[6]) Code = &; else default : Code = 3'bx;
if (Data[5]) Code = 5; else endcase

if (Data[4]) Code = 4; else)

if (Data[3]) Code = 3; else endmodule

if (Data[2]) Code = 2; else
if (Data[1]) Code = 1; else
if (Data[0]) Code = 0; else

Code = 3'bx;
end

UNIT-VI

VERILOG MODELS: Static RAM Memory, A simplified 486 Bus Model, Interfacing Memory to a
Microprocessor Bus, UART Design and Design of Microcontroller CPU.

Static RAM Memory

Truth Table for Static RAM
CS| OE | WE || Mode | VO pins

n
AAAICSs e—— 21 word

CS —————d by m bits ¢ ~m » H X1 X ‘ not selected high-Z

OF ————O static Data :‘ l: | : (m:;m disabled :i%h-z(
— RAM input / output - re. ata ou
WE = : L X 1 L ‘ write | datain

Fig . 1 Block Diagram of Static RAM

RAM stands for random access memory, which means that any word memory can be accessed
in the same amount of the time as any other word. Figure 1 shows the block diagram of a static RAM
with n address lines, M data lines, and three control lines. This memory can store a total of 2n words,
each m bits wide. The data lines are bi-directional in order to reduce the required number of pins and
the package size of the memory chip. When reading from the RAM, the data lines are output; when
writing to the RAM, the data lines serve as inputs. The three control lines function as follows: When
asserted low, chip select selects the memory chip so that memory read and write operations are
possible.

When asserted low, output enable enables the memory output onto an external bus. When
asserted low, write enable allows data to be written to the RAM. (We say that a signal is asserted when
itisin its active state. An active-low signal is asserted when it is low, and an active-high signal is asserted
when it is high.)

The RAM contains address decoders and a memory array. The address inputs to the RAM are
decoded to select cells within the RAM. Figure 2 shows the functional equivalent of a static RAM cell
that stores one bit of data. The cell contains a transparent D latch, which stores the data. When is
asserted low and is high, G = 0, the cell is in the read mode, and Data Out = Q. When is asserted low and
is high, G = 1 and data can enter the transparent latch. When either and goes high, the data is stored in
the latch. When is high, Data Out is high-Z.

6116 static CMOS RAM

6116 static CMOS RAM can store 2K bytes of data. Figure 3 shows the block diagram of a 6116
static RAM, which can store 2048 8-bit words of data. This memory has 16,384 cells, arranged in a 128 x
128 memory matrix. The 11 address lines, which are needed to address the 2 11 bytes of data, are
divided into two groups. Lines A10 through A4 select one of the 128 rows in the matrix. Lines A3 through
AO select 8 columns in the matrix at a time, since there are 8 data lines. The data outputs from the
matrix go through tristate buffers before connecting to the data I/O lines. These buffers are disabled
except when reading from the memory.

Block Diagram of 6116 Static RAM

G (| A] :
. - . Memory Matrix f
e CS| OE | WE | Mode | LOpins
— [oo | H] X | X ‘ not selected high-Z
o I L | H| H | outputdisabled | high-Z
/0 o
¢ ow,] owemlr |] L{L|H | ra data out
. D Column Decoder L| X| L | wrte | datain
10y Control T 1]
A3 Ay Al A —J |

Figure 3 Block diagram of a 6116 static RAM

The truth table for the RAM (given above) describes its basic operation. High-Z in the 1/O column
means that the output buffers have high-Z outputs, and the data inputs are not used. In the read mode,
the address lines are decoded to select eight of the memory cells, and the data comes out on the 1/O
lines after the memory access time has elapsed. In the write mode, Input data is routed to the latch
inputs in the selected memory cells when WE is low, but writing to the latches in the memory cells is not
completed until either WE goes high or the chip is deselected. The truth table does not take memory
timing into account.

Synchronous Static RAM

Memory is a basic element in any system whether the memory is volatile or non-volatile. In this
example, a volatile memory unit is designed in the form of a Synchronous Static RAM. Static Random-
Access Memory (SRAM) is a type of semiconductor memory that uses bi-stable latching circuitry to store
each bit. The term Static differentiates it from Dynamic RAM (DRAM) which must be periodically
refreshed. SRAM retains data, but it is still volatile as data is lost when the power to the memory unit is
cut off.

Verilog Module

Figure 1 presents the Verilog module of the Synchronous SRAM. This Synchronous SRAM can
store eight 8-bit values. The Synchronous SRAM module consists of a 8-bit data input line, dataln and a
8-bit data output line, dataOut. The module uses an 8-bit address line, Addr to locate the position of
data-byte within the memory array. With an 8-bit address line a 256-unit deep SRAM can be addressed,
but in this example, an 8-unit deep SRAM is designed for simplicity. The module is clocked using the 1-
bit input clock line Clk. The module also has a 1-bit chip select line, CS.

The 1-bit RD line is used to signal a data read operation on the Synchronous SRAM and the 1-bit
WE line is used to signal a data write operation on the Synchronous SRAM. Both the RD and WE lines are

active high.

syncRAM
Addr(moy | | dataCu7io)
dstalm(z:oy |
S|
os |
=T
WE |
[-

Figure 1. Verilog module of Synchronous SRAM

module syncRAM(dataln, dataOut, Addr, CS, WE, RD, Clk);
// parameters for the width
parameter ADR =8§;
parameter DAT =8§;
parameter DPTH =8§;
//ports
input [DAT-1:0] dataln;
output reg [DAT-1:0] dataOut;
input [ADR-1:0] Addr;
input CS, WE, RD, Clk;
//internal variables
reg [DAT-1:0] SRAM [DPTH-1:0];
always @ (posedge Clk)

begin
if (CS==1'b1)
begin
if (WE==1'b1 && RD == 1'b0)
begin
SRAM [Addr] = dataln;
end
else if (RD ==1'b1 && WE == 1'b0)
begin
dataOut = SRAM [Addr];
end
else;
end
else;
end
endmodule

Figure 2. Verilog Code for Synchronous SRAM

Verilog Test Bench for Synchronous SRAM (syncRAM_tb.v)
‘timescale 1ns / 1ps
module syncRAM _tb;
// Inputs

reg [7:0] dataln;

reg [7:0] Addr;

reg CS,WE,RD,Clk;
// Outputs

wire [7:0] dataOut;
// Instantiate the Unit Under Test (UUT)
syncRAM uut (.dataln(dataln), .dataOut(dataOut),.Addr(Addr), .CS(CS), .WE(WE), .RD(RD), .CIk(CIk));
initial
begin
// Initialize Inputs
dataln =8'h0; Addr =8'h0; CS =1'b0; WE =1'b0; RD =1'b0; Clk =1'b0;
// Wait 100 ns for global reset to finish
#100;
// Add stimulus here
dataln =8'h0; Addr =8'h0; CS =1'b1; WE =1'b1; RD =1'b0;
#20; dataln =8'h0; Addr = 8'hO;
#20; dataln =8'hl; Addr =8'h1;
#20; dataln =8'h10; Addr =8'h2;
#20; dataln =8'h6; Addr =8'h3;
#20; dataln =8'h12; Addr =8'h4;
#40; Addr =8'h0; WE =1'b0; RD =1'b1;
#20; Addr =8'hl;
#20; Addr =8'h2;
#20; Addr =8'h3;
#20; Addr =8'h4;
end
always #10 Clk = ~Clk;

endmodule

DR 2 4DEX® va | dxl O BZEI=LALR AL, A Rivex &30 »,

%

&
)
J
D 100 200 300 400 500 600

@mm HLAP PP o\ RPN il I PPN oA PP i EPRRPRPR i AU IRPRPRPEN ik AR

p WA dataouf7| = % 01 HIEwE 15
Sy mg detatnz 16 — | i
© | w mg addra)| o TR £V £ €5 SEN V6563 € 4
(51} T cs 1
«| I CE
<r T RO 1
| 1Bk 0 L P AL AL PP P A AL P P PP P A P PP AL PP AL L AL
']
I@'\
i

Figure 4. Timing diagram of Synchronous SRAM with four data

Microprocessor Bus Interface:

Memornes and inmput-output devices are usuvally interfaced to microprocessor by means of a
tristate bus. To assure proper transfer of data on this bus, the timing characteristics of both the
microprocessor bus interface and the memory must be carefully considered. We have already
developed a VHDL timing model for a RAM memory, and next we will develop a timing model
for microprocessor bus interface. Then we will simulate the operation of a system containing a

microprocessor and memory to determine whether the tming specifications are satisfied.

Figure 14 shows a typical bus interface to a memory system.

Address .
Bus o -
inter- - ata . emaory
CPU face J— System
unit Ads
WIR
Rdy

Figure 14 Microprocessor Bus Interface
The normal sequence of events for writing Lo memory 1s:

(1) The microprocessor outputs an address on the address bus and assernts Ads (address strobe) to
indicate a valid address on the bus;

(2) the processor places data on the data bus and assents W/R (write/read) to initiate writing the
data to memory. The memory system asserts Rdy (ready) to indicate that the data transfer is
complete.

For reading from memory. step (1) is the same. but in step (2) the memory places data on the

data bus and these data are stored inside the processor when the memory system asserts Rdy.

In the next section a simplified VHDL model for a 486 microprocessor bus interface developed.
The actual 486 bus interface is very complex and supports many different types of bus cycles.

Figures 15 and 16 illustrate two of these bus cycles.

Intel 486 Basic 2-2 Bus Cycle

S e e e ee
OO
A A A A

Figure 15

In Figure 15, one word of data 15 transferred between the CPU and the bus every two
clock cycles. These clock cycles are labeled T1 and T2, and they correspond to states of the
internal bus controller. In addition, the bus has an idle state, Ti. During Ti and between data
transfers on the bus, the data bus 15 in a high-impedance state (indicated on the diagram by
DATA being halfway between (0 and 1). The bus remains in the idle state until the bus interface
receives a bus request from the CPU. In T1. the interface outputs a new address on the bus and
asserts Ads low. For a read cyele, the read-write signal (W/R) 15 also asserted low during T1 and
T2. During T2 of the read cyele, the memory responds to the new address and places data on the
data bus (labeled “to CPU” on the diagram). The memory system also asserts Rdy low to
indicate that valid data is on the bus. At the rising edge of the clock that ends T2, the bus
interface senses that Rdy is low and the data is stored inside the CPLL

The next bus cycle in Figurel5 is a write cycle. As before, the new address is output
during T1 and Ads goes low, but W/ R remains high. During T2, the CPU places data on the bus.
Mear the end of T2, the memory system asserts Rdy low to indicate completion of the write
cyele, and the data is stored in the memory at the end of T2 (rising edge of the clock). This is
followed by another read and another write cycle.

16 Intel 486 Basic 3-3 Bus Cycle

Ti y T1 ¢ T2 g T2 ¢ T1 ¢ T2 4 T2 g A

CLK ! ! | 1
I 1 I I ! | I
E I \ ! , I I \ 1 , I 1
! I 1 1 1
| I 1 1 I 1 i
Address . : - ! :
I ! 1 I ; | I
5 1 I 1 I I ! I
e 1 \ + +— —— / ! ' I
I | i I | I
RDY X XXXXXXXXAXXXY | + AXXXXXX | :
I ! I ! 1 | I

G e >—

READ WRITE
Figure 16

Figure 16 shows 486 read and write bus cycles for the case where the memory is slow
and reading one word from memory or writing one word to memory requires three clock cycles.
The read operation is similar to that in Figure 5, except at the end of the first T2 cycle. the bus

interface senses Rdy is high and inserts another T2 cycle — called wait states.

SIMPLIFIED 486 BUS INTERFACE:

The internal bus interface in Figure 17 shows only those signals needed for transferring data
between the bus interface unit and the CPU. If the CPU needs to write data to a memory attached to the
external bus interface, it requests a write cycle by setting br (bus request) to 1 and wr = 0. When the write

or read cycle is complete, the bus interface unit returns done = 1 to the CPU.

-17 Simplified 486 Bus Interface Unit

CPU i486_bus interface unit
docl:t i cclloknc W/R)
std std Ads —»
Rdy fe—
br br external bus
o e interface
address[31:0] _&_» address[31:0] abus[31:0] 23
w_data[31:0] 4‘_, w_data[31:0] dbus[31:0] 32
r_data[31:0] |eg—23<— r data[31:0] ~

intermal bus interface

Figure 17

The 486 bus interface unit contains a state machine to control the bus operation. Figure

18 15 a modified SM chart that represents a simplified version of this state machine.

In state Ti, the bus interface 1s idle, and the data bus is driven to high-Z. When a bus

reguires (br) is received from the CPU. The controller goes to state T1.

In T1. the new address is driven onto the address bus, and Ads 15 set to 0 to indicate a
valid address on the bus. The write-read signal (W/R) is set low for a read cycle or high

for a write cycle, and the controller goes to state T2,

In T2, Ads returns to 1. For a read cycle, wr = (0 and the controller waits for Rdy = O,
which indicates valid data is available from the memory, and then std (store data) 1s
asserted to indicate that the data should be stored in the CPU. For a wrte cyele, wr = 1

and data from the CPL is placed on the data bus. The controller then waits for Rdy = 0 to

indicate that the data has been stored in memory. For both read and write, the done
signal is turned on when Rdy = 0 to indicate completion of the bus cycle. After read or
write is complete, the controller goes to Ti if no bus request is pending, otherwise it goes

to state T1 to initiate another read or write cycle. The done signal remains on in Ti.

8 T1_ 1
T1
abus = new address
dbus = high-Z
Done Ads ="Dr
dbus=high-Z WIR = wr
T2
(abus = same address)
Ads ="1"

1
{write}

(dbus = data from CPU)

Casta 10 EBY = abus) : 1
data to CPU = dbus
1

Done

br

N

Figure 18 SM Chart for Simplified 486 Bus Interface

UART DESIGN

Universal Asynchronous Receiver Transmitter is an integrated circuit, which is used for transmitting
and receiving data asynchronously via the serial port on the computer. It contains a parallel-to-serial
converter for data transmitted from the computer and a serial-to parallel converter for data coming in via
the serial line. The UART also has a buffer for temporarily storing data from high-speed transmissions. In
addition to the basic job of converting data from parallel to serial for transmission and from serial to
parallel on reception. The UART serial module is divided into three sub-modules:

e The baud rate generator,
e receiver module and
e transmitter module.

The baud rate generator is used to produce a local clock signal. In data transmission through the
UART, once the baud-rate has been established, both the transmitter and the receiver’s internal clock are
set to the same frequency.

The UART transmit module converts the data bytes into serial bits according to the frame format and
transmits those bits through TXD.

UART frame format consist of a start bit, data bit, parity bit and stop bit. After the StartBit the data bits
are sent, with the Least Significant Bit (LSB) sent first. The start bit is always low and the stop bit is
always high. When the complete data word has been sent, it adds a parity bit this parity bit may be used
by the receiver to perform error checking. Then at least one Stop Bit is sent by the transmitter. Because

asynchronous data are “selfsynchronizing”, if there is no data to transmit, the transmission line will be
idle

=to PAarity Crata Chata Chata Crata Dhata D=ata Crata Crata Erart
Bit Bit Bit ~ Bit & Bit = Bit 2 Bit = Bit =2 Bit 1 Bit O BEit

Fig 1: Data format for ASCII text transmitted by a UART
L HT_ e sinamr

Sarial_pn —------- —
: --------—l

L | omew ___m

=
Remmaed__reevt_rmesaely_in———TEEE TS i
=T i controllcr -EI
En'nr
- = — Tofirom
Sy Clock N PART Chovh

Generator Clock J
e i

Hom_peaciy — Transmitter =’—

L e lLlllIIr s

I‘H_T.El'ﬂrw
serial_giiC --------—
Lonow]_ MTAN_

e —.}Y',{‘,_ﬁg-------—

LLART_Transmitter_Aucih
Fig 2: Architecture of UART

UART transmitter

The UART transmitter is always part of larger environment in which a host processor controls
transmission by fetching a data word in parallel format and directing the UART to transmit it in a serial
format . likewise, receiver must detect transmission, receive the data in serial format, and strip off start-
and stop-bits, and store the data word in a parallel format. The receiver‘s job is more complex because the
clock used to send the inbound data .

The input —output signals of the transmitter are shown in the high-level block diagram in figure 3
the input signals are provider by the host processor, and the output signals control the movement of data
in the UART .

The architecture of the transmitter will consist of a controller, a data register (XMT-datareg) , a
data shift register (XMT-shiftreg) , and a status register (bit-count) to count the bits that are transmitted.
The status register will be included with in the data path unit.

The ASM chart state machine controlling the transmitter is shown figure 4. The machine as three states :
idle, waiting, and sending.

When reset-is asserted, the machine a synchronously enters idle, bit-count is cleared
,XMTshftreg is loaded with 1 s ,and the control signal clear, load-XMT- shftreg , shift ,and start are driven
to 0. In idle, if an active edge of clock occurs while load-XMT-data-ref=g is asserted by external host the
contents of data-bus while to transfer to XMT-data-reg (this action is not part of ASM chart because it
occurs independently of the state of the machine) the machine remains in idle until start is asserted

Byte,_rescy 4J——} Load_¥T_shitreg

Lot _J0WT_datareg ————| — &n
LJART
Transmitter
Datapath
Gl munler ——H Controller s ahilft
T byt —————f — SR

Interface signals of a state machine controller for a UART transmuitter

wailing

Bit vpunl =01

ig 4: ASM chart for the state machine controller for the UART transmutter

When Byte- ready is asserted, Load-XMT-shftreg is asserted and next —state is driven to waiting.
The assertion of load-XMT-shftreg indicates that XMT-datareg now contains data that can be transferred
to the internal shift register.

At the next active edge of clock, with load-XMT-shftreg asserted, three activities occur:
(1) State transfer from idle to waiting,

(2)The contents of XMT-datareg are loaded in to the left mode bits of XMT-shftreg a (word-
size+1)-bit shift reg whose LSB signal the start and stop of transmission, and The LSB of XMT- shftreg is
reloaded with 1, the stop-bit. The machine remains in waiting until the external processor asserted T-
byte.

As the next active edge of clock, with T-byte asserted state enters sending and LSB of XMT-
shftreg is set to 0 to signal the start of transmission at the same time shift is driven to 1, and next-state
retains the state code corresponding to sending. At sub sequences active edges of clock, with shift
asserted state remains in sending and the contents of XMT-shftreg are shifted towards the LSB the
machine increments bit-count after each movement of data, and when bit-count reaches 9 clear asserts,
indicating that all of bits of augmented word have been shifted to serial output. At the next active edge
of the clock, the machine returns to idle.

UART receiver

The UART receiver has the task of receiving the serial bit stream of data, removing the start-bit,
and transferring the data in a parallel format to a storage register connected to the host data bus.

The cycles of Sample _ clock will be counted to ensure that the data are sampled in the middle
of a bit time, as shown in the figure 6 the sampling algorithm must

(1)Verify that a start bit has been received,
(2) Generate samples from 8 bits of the data and
(3)Load the data on to the local bus.

Three additional samples will be taken to confirm that a valid start —bit has arrived. Thereafter, 8
successive bits will be sampled at approximately the centre of their bit times. Under worst-case
conditions of misalignment, the sample is taken a fully cycle of Sample_clock ahead of actual centre of
the bit time, which is a tolerable skew.

iark el = el od et e ezl = L= Datas Ml el Shags
Bat Birt 1 Bir 2 Bit3 Bit 4 BitS By & BitF B & Eit
3

1 o |
_ ! Jum AL

Samgples b Samg@le to Tor
detrct start Dhetamct davtss by Svop bit
- 1

Fig 5: UART receiver sampling format for clock regeneration

" e nok_nsaly put
o _Sampks omnker
5 Inc Sample_counter

— cr_Bt_counter

. ——— inc Bit counter
Recaiver - =
Controller
Serial in ———— o -
—* Emwl
Sample gwmter ————————F
-

Bit_roumder __'[

Fig 6: Interface signals of a state-machine controller for the UART receiver

The ASM chart of a state machine controller for the receiver is shown in figure 7 .

The machine has three states: idle, starting, and receiving.

Transitions between states are synchronized by Sample _ clk.

Assertion of an asynchronous active —low reset puts the machine in the idle state.

It remains there until Serial _inis low, and then makes a transition to starting.

In starting, the machine samples Serial _in to determine whether the first bit is a valid
start — bit (it must be 0).

Depending on the sampled values , inc _ Sample _ counter and clr _ Sample _ counter
may be asserted to increment or clear the counter at the next active edge of Sample _
clock. If the next three samples of Serial _in are 0, the machine concludes that the start
— bit is valid and goes to the state receiving.

Sample _ counter is cleared on the transition to receiving. In this state, eight successive
samples are taken (one for each bit of the byte, at each active edge of Sample _
clk),with inc _Sample _ counter asserted. Then Bit _ counter is incremented.

If the sampled bit is not the last (parity) bit , inc _ Bit _ counter and shift are asserted.
The assertion of shift will cause the sample value to be loaded into the MSB of RCV _
shftreg, the receiver shift register, and will shift the 7 leftmost bits of the register
towards the LSB. After the last bit has been sampled, the machine will assert read _ not
_ready _ out, a handshake output signal to the processor, and clear the bit counter.

If read _ not _ ready _in is asserted, the host processor is not ready to receive the data
(Errorl). If a stop —bit is not the next bit (detected by Serial _in =0), there is an error in
the format of the received data (Error2). Otherwise, load is asserted to cause the
contents of the shift register to be transferred as a parallel word to RCV _ datareg, a
data register in the host machine, with a direct connection to data _ bus.

Inc_tzmple_c
fannTer

[Clr_Sample_roumiter 1
.

Rereivingfire: Samgle cinailer

Shitt
It il cinanles

rezd_not_ready out dr_Sample_counterdr_Bi_counter]

@

Fig 7: UART Receiver ASM chart

APPLICATIONS:UARTSs are used for devices including GPS units
— Modems

— wireless communication

— Bluetooth modules, amongst many other applications

— low-cost home computers or embedded systems dispense with a UART

Clr Samole rounter

Errar

jul

<>

Design of microcontroller to CPU:

Instruction Set Architecture:

Each instruction is 12 bits. There are 3 types of instructions by encoding, shown as following:

e M type: one operand is accumulator (sometimes ignored) and the other operand is from data
memory; the result can be stored into accumulator or the data memory entry (same entry as the

second operand).

e | type: one operand is accumulator and the other operand is immediate number encoded in

instruction; the result is stored into accumulator.

e Stype: special instruction, no operand required. (e.g. NOP)

These instructions can be grouped into 4 categories by function.

1. ALU instruction: using ALU to compute result;

2. Unconditional branch: the GOTO instruction;

3. Conditional branch: the JZ, JC, JS, JO instruction;

4. Special instruction: the NOP.

instruction instruction instruction
(binary) (assembly) (meaning)

0 0000_0000_0000 NOP (no operation)

1 1011_0000_0001 MOVIA Acc, 1 Acc=1

2 0010_0010_0000 MOVAM DMem([0], Acc DMem[0] = Acc =1

3 1011_0000_0000 MOVIA Acc, 0 Acc=0

4 0011_0011_0000 MOVMA Acc, DMem([0] Acc = DMem[0] =1

5 0001_0000_0101 GOTO 5 (jump to itself, i.e. infinite loop)

The above table contains the detailed information of each M type instruction. Note that “aaaa”
encodes the 4 bit address of data memory, and the “d” bit means destination of the result, i.e. if d = 1,
result is written to Acc, otherwise the result is written to the same memory location as the operand

Note that all M type instructions are ALU instructions.

| type instructions

Note that | type instructions contains unconditional branch, conditional branch, and ALU instructions.

S type instructions

There is only one S type instruction, i.e. the NOP instruction.

instruction
mnemonics

function

encoding

status
affected

example

NOP no operation

0000_0000_0000

none

NOP

Architecture of Microcontroller unit:

DECODE

Y v

Data
Memory

i
I

!

I

I

)

!

!

! -

: (DMem) DMem.E
!

!

!

I

!

!

!

MUX1
MUX1. Adder

Control (16 * 8 bit) DMem. WE
Logic #

Data Register

Program 1 -—
(DR) DR.E

Counter (PC) PCE

___4__
.
I
[
[
[
|
1
|
|
I
|
——
[
I
‘ i
|
|
I
I
[
1
[
I
|
L
I

. 1

Y . :

I MUX2 1

Pmmm : * MUX2.Sal :

Memory | — PMem E | |

Ezég”?g‘%) PMem LE : A4 :
* it

: ALU ALU.E :

. ALU.Mode .

l]]

]]

Instruction : Acc.E Y '

! — ““ 1 Accumulator Status !

Register (IR) | o : e (Acc) Register (SR) | |

| 1

: I ?BR.E 1

]

]]

: EXECUTE :

i —— I e il

The following two type of components holds programming context.

e Program counter, program memory, data memory, accumulator, status register (green boxes).
They are programmer visible registers and memories.

e Instruction register and data register (purple boxes). They are programmer invisible registers.

The following two type of components is Boolean logics that do the actual computation work. They are
stateless
ALU, MUX1, MUX2, Adder (blue boxes), used as a functional unit.

e Control Logic (yellow box), used to denote all control signals (red signal)

Instruction N

DECODE

Instruction N + 1

FETCH

Instruction N - 1

EXECUTE

EXECUTE

Update PC. Fetch instruction. Read data memary (if Update PC.
Update Acc or DMeam. Put the fetched necessary) Update Acc or DMem
Update SR. instruction in IR. Put the fetched Update SR

operand in DR

EXECUTE

Each instruction needs 3 clock cycles to finish, i.e. FETCH stage, DECODE stage, and EXECUTE
stage. Note that it is not pipelined. Together with the initial LOAD state, it can be considered as an FSM
of 3 states (technically 4 states).

States:
1. LOAD (initial state): load program to program memory, which takes 1 cycle per instruction loaded;
2. FETCH (first cycle): fetch current instruction from program memory;
3. DECODE (second cycle): decode instruction to generate control logic, read data memory for operand;
4. EXECUTE (of the third cycle): execute instruction
Registers
The microcontroller has 3 programmer visible register:
1. Program Counter (8 bit, denoted as PC): contains the index of current executing instruction.

2. Accumulator (8 bit, denoted as Acc): holds result and 1 operand of the arithmetic or logic
calculation.

3. Status Register (4 bit, denoted as SR): holds 4 status bit, i.e. Z,C, S, O.
1. Z(zero flag, SR[3]): 1 if result is zero, 0 otherwise.
2. C/(carry flag, SR[2]): 1 if carry is generated, 0 otherwise.
3. S(sign flag, SR[1]): 1 if result is negative (as 2’s complement), 0 otherwise.
4. O (overflow flag, SR[0]): 1 if result generates overflow, 0 otherwise.

The microcontroller has 2 programmer invisible registers (i.e. they can not be manipulated by
programmer):

1. Instruction Register (12 bit, denoted as IR): contains the current executing instruction.

2. Data Register (8 bit, denoted as DR): contains the operand read from data memory.

Similarly, each of these registers has an enable port as a flag for whether the value of the register should
be updated in state transition. They are denoted as IR.E and DR.E.

Program memory

The microcontroller has a 256 entry program memory that stores program instructions, denoted as
PMem. Each entry is 12 bits, the ith entry is denoted as PMemli]. The program memory has the
following input/output ports.

e Enable port (1 bit, input, denoted as PMem.E): enable the device, i.e. if it is 1, then the entry
specified by the address port will be read out, otherwise, nothing is read out.

e Address port (8 bit, input, denoted as PMem.Addr): specify which instruction entry is read out,
connected to PC.

e Instruction port (12 bit, output, denoted as PMem.l): the instruction entry that is read out,
connected to IR.

e 3 special ports are used to load program to the memory, not used for executing instructions.

e Load enable port (1 bit, input, denoted as PMem.LE): enable the load, i.e. if it is 1, then the
entry specified by the address port will be load with the value specified by the load instruction
input port and the instruction port is supplied with the same value; otherwise, the entry
specified by the address port will be read out on instruction port, and value on instruction load
port is ignored.

e Load address port (8 bit, input, denoted as PMem.LA): specify which instruction entry is loaded.
e Load instruction port (12 bit, input, denoted as PMem.LI): the instruction that is loaded.

For example, if the address point is supplied with 8’b0000_0011 and enable is set to 1, the fourth entry
is read out on instruction port.

Data memory

The microcontroller has a 16 entry data memory, denoted as DMem. Each entry is 8 bits, the ith
entry is denoted as DMem([i]. The program memory has the following input/output ports.

e Enable port (1 bit, input, denoted as DMem.E): enable the device, i.e. if it is 1, then the entry
specified by the address port will be read out or written in; otherwise nothing is read out or
written in.

e Write enable port(1 bit, input, denoted as DMem.WE): enable the write, i.e. if it is 1, then the
entry specified by the address port will be written with the value specified by the data input port
and the data output port is supplied with the same value; otherwise, the entry specified by the
address port will be read out on data output port, and value on data input port is ignored.

e Address port (4 bit, input, denoted as DMem.Addr): specify which data entry is read out,
connected to IR[3:0].

e Data input port (8 bit, input, denoted as DMem.DI): the value that is written in, connected to
ALU.Out.

e Data output port (8 bit, output, denoted as DMem.DO): the data entry that is read out,
connected to MUX2.In1.

For example, if the address point is supplied with 8’0000 0011, data input port is supplied with
8’0000_0000, enable is set to 1, and write enable is set to 1, the fourth entry of the data memory is
written with value 0 and the data output port shows 80000 _0000.

PC adder

PC adder is used to add PC by 1, i.e. move to the next instruction. This component is pure
combinational. It has the following port.

e Adder input port (8 bit, input, denoted as Adder.In): connected to PC.
e Adder output port (8 bit, output, denoted as Adder.Out): connected to MUX1.In2.
MUX1

MUX1 is used to choose the source for updating PC. If the current instruction is not a branch or it is
a branch but the branch is not taken, PC is incremented by 1; otherwise PC is set to the jumping target,
i.e. IR [7:0]. It has the following port.

e MUX1 input 1 port (8 bit, input, denoted as MUX1.In1): connected to IR [7:0].
e MUX1 input 2 port (8 bit, input, denoted as MUX1.In2): connected to Adder.Out.
e MUX1 selection port (1 bit, input, denoted as MUX1.Sel): connected to control logic.
e MUX1 output port (8 bit, output, denoted as MUX1.0ut): connected to PC.
ALU

ALU is used to do the actual computation for the current instruction. This component is pure
combinational. It has the following port. The mode of ALU is listed in the following table.

e ALU operand 1 port (8 bit, input, denoted as ALU.Operand1): connected to Acc.

e ALU operand 2 port (8 bit, input, denoted as ALU.Operand2): connected to MUX2.0ut.
e ALU enable port (1 bit, input, denoted as ALU.E): connected to control logic.

e ALU mode port (4 bit, input, denoted as ALU.Mode): connected to control logic.

e Current flags port (4 bit, input, denoted as ALU.CFlags): connected to SR.

e ALU output port (8 bit, output, denoted as ALU.Out): connected to DMem.DI.

e ALU flags port (4 bit, output, denoted as ALU.Flags): the Z (zero), C (carry), S (sign), O (overflow)
bits, from MSB to LSB, connected to status register.

MUX2

MUX2 is used to choose the source for operand 2 of ALU. If the current instruction is M type, operand 2
of ALU comes from data memory; if the current instruction is | type, operand 2 of ALU comes from the
instruction, i.e. IR [7:0]. It has the following port.

e MUX2 input 1 port (8 bit, input, denoted as MUX2.In1): connected to IR [7:0].

e MUX2 input 2 port (8 bit, input, denoted as MUX2.In2): connected to DR.

e MUX2 selection port (1 bit, input, denoted as MUX2.Sel): connected to control logic.

e MUX2 output port (8 bit, output, denoted as MUX2.0ut): connected to ALU.Operand?2.

Control unit design

Control signal is derived from the current state and current instruction. The control logic component is

purely combinational. There are in total 12 control signals, listed as follows.
e PC.E: enable port of program counter (PC);
e Acc.E: enable port of accumulator (Acc);
e SR.E: enable port of status register (SR);
¢ IR.E: enable port of instruction register (IR);
e DR.E: enable port of data register (DR);
e PMem.E: enable port of program memory (PMem);
e DMem.E: enable port of data memory (DMem);
e DMem.WE: write enable port of data memory (DMem);
e ALU.E: enable port of ALU;
¢ ALU.Mode: mode selection port of ALU;
e MUX1.Sel: selection port of MUX1;
e MUX2.Sel: selection port of MUX2;

VERILOG CODE FOR ALU:

module ALU(input [7:0] Operandl,Operand2,
input E,
input [3:0] Mode,
input [3:0] CFlags,
output [7:0] Out,
output [3:0] Flags
// the Z (zero), C (carry), S (sign),O (overflow)
from MSB to LSB, connected to status register
) ;
wire Z,S,0;
reg CarryOut;
reg [7:0] Out ALU;
always Q(*)
begin

bits,

case (Mode)
4'b0000: {CarryOut,Out ALU} = Operandl + Operand2;

4'b0001: begin Out ALU = Operandl - Operand2;
CarryOut = !Out ALU[7];
end

4'b0010: Out ALU = Operandl;

4'b0011: Out ALU = Operand2;

4'b0100: Out ALU = Operandl & OperandZ;
4'b0101: Out ALU = Operandl | OperandZ;
4'b0110: Out ALU = Operandl "~ OperandZ;
4'b0111: begin

Out ALU = Operand2 - Operandl;

CarryOut = !Out ALUI[7];

end

4'b1000: {CarryOut,Out ALU} = Operand2 + 8'hl;
4'b1001: begin

Out ALU = Operand2 - 8'hl;

CarryOut = !Out ALUI[7];

end

4'b1010: Out ALU = (Operand2 << Operandl[2:0]) [(
Operand?2 >> Operandl[2:0]);

4'b1011: Out ALU = (Operand2 >> Operandl[2:0]) | (

Operand?2 << Operandl[2:0]);
4'b1100: Out ALU = Operand2 << Operandl[2:0];
4'b1101: Out ALU = Operand2 >> Operandl[2:0];
4'b1110: Out ALU = Operand2 >>> Operandl[2:0];
4'bl111: begin

Out ALU = 8'hO0 - Operand2;

CarryOut = !Out ALU[7];

end

default: Out ALU = Operand2;

endcase

end

assign O = Out ALU[7] ~ Out ALU[6];
assign Z = (Out ALU == 0)? 1'bl : 1'bO;

assign S = Out ALU[7];
assign Flags = {Z,CarryOut,S,0};

assign Out = Out ALU;
endmodule

